Training method and device of traffic prediction model, electronic equipment and storage medium

The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: REN JIAWEI, ZHU YUANRUI, CAO QINGPING, LI QIAOLING, HUANG ZHILAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator REN JIAWEI
ZHU YUANRUI
CAO QINGPING
LI QIAOLING
HUANG ZHILAN
description The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118264573A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118264573A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118264573A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOSw9FCL8WRSAqqvSRZT-HleJd4zicnwhxAKpXzMybF22TDAtLRwH5qY6MOHJ4swWpp5yM92wpJji2mVUoqEO_IfSwOalMEK-RY4DkbzxkTabD9Od4DMti5k0_YPXbRbG-XZv6vkXUFkM0FoLc1o-yPO-O-8OpulT_OB92czz7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><source>esp@cenet</source><creator>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</creator><creatorcontrib>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</creatorcontrib><description>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240628&amp;DB=EPODOC&amp;CC=CN&amp;NR=118264573A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240628&amp;DB=EPODOC&amp;CC=CN&amp;NR=118264573A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN JIAWEI</creatorcontrib><creatorcontrib>ZHU YUANRUI</creatorcontrib><creatorcontrib>CAO QINGPING</creatorcontrib><creatorcontrib>LI QIAOLING</creatorcontrib><creatorcontrib>HUANG ZHILAN</creatorcontrib><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><description>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOSw9FCL8WRSAqqvSRZT-HleJd4zicnwhxAKpXzMybF22TDAtLRwH5qY6MOHJ4swWpp5yM92wpJji2mVUoqEO_IfSwOalMEK-RY4DkbzxkTabD9Od4DMti5k0_YPXbRbG-XZv6vkXUFkM0FoLc1o-yPO-O-8OpulT_OB92czz7</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>REN JIAWEI</creator><creator>ZHU YUANRUI</creator><creator>CAO QINGPING</creator><creator>LI QIAOLING</creator><creator>HUANG ZHILAN</creator><scope>EVB</scope></search><sort><creationdate>20240628</creationdate><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><author>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118264573A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>REN JIAWEI</creatorcontrib><creatorcontrib>ZHU YUANRUI</creatorcontrib><creatorcontrib>CAO QINGPING</creatorcontrib><creatorcontrib>LI QIAOLING</creatorcontrib><creatorcontrib>HUANG ZHILAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN JIAWEI</au><au>ZHU YUANRUI</au><au>CAO QINGPING</au><au>LI QIAOLING</au><au>HUANG ZHILAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><date>2024-06-28</date><risdate>2024</risdate><abstract>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118264573A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Training method and device of traffic prediction model, electronic equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20JIAWEI&rft.date=2024-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118264573A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true