Training method and device of traffic prediction model, electronic equipment and storage medium
The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period;...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | REN JIAWEI ZHU YUANRUI CAO QINGPING LI QIAOLING HUANG ZHILAN |
description | The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118264573A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118264573A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118264573A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOSw9FCL8WRSAqqvSRZT-HleJd4zicnwhxAKpXzMybF22TDAtLRwH5qY6MOHJ4swWpp5yM92wpJji2mVUoqEO_IfSwOalMEK-RY4DkbzxkTabD9Od4DMti5k0_YPXbRbG-XZv6vkXUFkM0FoLc1o-yPO-O-8OpulT_OB92czz7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><source>esp@cenet</source><creator>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</creator><creatorcontrib>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</creatorcontrib><description>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240628&DB=EPODOC&CC=CN&NR=118264573A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240628&DB=EPODOC&CC=CN&NR=118264573A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN JIAWEI</creatorcontrib><creatorcontrib>ZHU YUANRUI</creatorcontrib><creatorcontrib>CAO QINGPING</creatorcontrib><creatorcontrib>LI QIAOLING</creatorcontrib><creatorcontrib>HUANG ZHILAN</creatorcontrib><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><description>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOSw9FCL8WRSAqqvSRZT-HleJd4zicnwhxAKpXzMybF22TDAtLRwH5qY6MOHJ4swWpp5yM92wpJji2mVUoqEO_IfSwOalMEK-RY4DkbzxkTabD9Od4DMti5k0_YPXbRbG-XZv6vkXUFkM0FoLc1o-yPO-O-8OpulT_OB92czz7</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>REN JIAWEI</creator><creator>ZHU YUANRUI</creator><creator>CAO QINGPING</creator><creator>LI QIAOLING</creator><creator>HUANG ZHILAN</creator><scope>EVB</scope></search><sort><creationdate>20240628</creationdate><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><author>REN JIAWEI ; ZHU YUANRUI ; CAO QINGPING ; LI QIAOLING ; HUANG ZHILAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118264573A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>REN JIAWEI</creatorcontrib><creatorcontrib>ZHU YUANRUI</creatorcontrib><creatorcontrib>CAO QINGPING</creatorcontrib><creatorcontrib>LI QIAOLING</creatorcontrib><creatorcontrib>HUANG ZHILAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN JIAWEI</au><au>ZHU YUANRUI</au><au>CAO QINGPING</au><au>LI QIAOLING</au><au>HUANG ZHILAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training method and device of traffic prediction model, electronic equipment and storage medium</title><date>2024-06-28</date><risdate>2024</risdate><abstract>The invention provides a traffic prediction model training method and device, electronic equipment and a storage medium, and relates to the technical field of networks. The method comprises the following steps: acquiring link state information of each link in a target network in a first time period; inputting the link state information of each link in the first time period into the traffic prediction model of each link, and outputting the predicted traffic of each link in the second time period; calculating the predicted total traffic of the target network in the second time period according to the predicted traffic of the plurality of links in the second time period; and optimizing the model parameters of the traffic prediction model of each link by taking the difference between the minimum predicted total traffic and the actual total traffic as an optimization target of the model parameters until a preset model convergence condition is met. According to the invention, the state information of each link is u</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118264573A |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Training method and device of traffic prediction model, electronic equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20JIAWEI&rft.date=2024-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118264573A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |