Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm

The invention discloses an efficient federal learning security aggregation method based on a symmetric homomorphic encryption algorithm, and the method comprises the steps: encrypting a local gradient by a plurality of users through a public key of a central service, and then transmitting a cipherte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG RONG, XIONG LING, YANG XINGCHUN, GENG JIAZHOU, LIU ZHICAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG RONG
XIONG LING
YANG XINGCHUN
GENG JIAZHOU
LIU ZHICAI
description The invention discloses an efficient federal learning security aggregation method based on a symmetric homomorphic encryption algorithm, and the method comprises the steps: encrypting a local gradient by a plurality of users through a public key of a central service, and then transmitting a ciphertext to an aggregation server; after aggregation, the aggregation server sends an aggregation ciphertext to the central server, and the central server decrypts the aggregation ciphertext to obtain a global gradient; according to the technical scheme provided by the invention, a homomorphic signature scheme is adopted to verify global model parameters, so that the correctness of an aggregation result is ensured, potential threats such as privacy disclosure and data forgery can be overcome in federated learning, the security and reliability of data are ensured, and the calculation and communication overhead is reduced. 本发明公开了一种基于对称同态加密算法的高效联邦学习安全聚合方法,多个用户将用中央服务的公钥加密局部梯度,然后将密文发送到聚合服务器;聚合服务器聚合后,将聚合密文发送给中央服务器,中央服务器解密后得到全局
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118264385A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118264385A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118264385A3</originalsourceid><addsrcrecordid>eNqNizkOwjAURNNQIOAO5gAUIYDSoiiIioo--jjjJYoXfZsit8dCHABNMYverKupV8pKC5-FwgimjFHMIPbWa5Eg3wxBWjM0ZRu8cMgmjOJFqYClp8WVia0UJrgijqZkeMlL_B5o1oFtNm5brRTNCbufb6r9rX929wNiGJAiSXjkoXvUdXu8nJr2fG3-YT4ax0I-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm</title><source>esp@cenet</source><creator>WANG RONG ; XIONG LING ; YANG XINGCHUN ; GENG JIAZHOU ; LIU ZHICAI</creator><creatorcontrib>WANG RONG ; XIONG LING ; YANG XINGCHUN ; GENG JIAZHOU ; LIU ZHICAI</creatorcontrib><description>The invention discloses an efficient federal learning security aggregation method based on a symmetric homomorphic encryption algorithm, and the method comprises the steps: encrypting a local gradient by a plurality of users through a public key of a central service, and then transmitting a ciphertext to an aggregation server; after aggregation, the aggregation server sends an aggregation ciphertext to the central server, and the central server decrypts the aggregation ciphertext to obtain a global gradient; according to the technical scheme provided by the invention, a homomorphic signature scheme is adopted to verify global model parameters, so that the correctness of an aggregation result is ensured, potential threats such as privacy disclosure and data forgery can be overcome in federated learning, the security and reliability of data are ensured, and the calculation and communication overhead is reduced. 本发明公开了一种基于对称同态加密算法的高效联邦学习安全聚合方法,多个用户将用中央服务的公钥加密局部梯度,然后将密文发送到聚合服务器;聚合服务器聚合后,将聚合密文发送给中央服务器,中央服务器解密后得到全局</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240628&amp;DB=EPODOC&amp;CC=CN&amp;NR=118264385A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240628&amp;DB=EPODOC&amp;CC=CN&amp;NR=118264385A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG RONG</creatorcontrib><creatorcontrib>XIONG LING</creatorcontrib><creatorcontrib>YANG XINGCHUN</creatorcontrib><creatorcontrib>GENG JIAZHOU</creatorcontrib><creatorcontrib>LIU ZHICAI</creatorcontrib><title>Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm</title><description>The invention discloses an efficient federal learning security aggregation method based on a symmetric homomorphic encryption algorithm, and the method comprises the steps: encrypting a local gradient by a plurality of users through a public key of a central service, and then transmitting a ciphertext to an aggregation server; after aggregation, the aggregation server sends an aggregation ciphertext to the central server, and the central server decrypts the aggregation ciphertext to obtain a global gradient; according to the technical scheme provided by the invention, a homomorphic signature scheme is adopted to verify global model parameters, so that the correctness of an aggregation result is ensured, potential threats such as privacy disclosure and data forgery can be overcome in federated learning, the security and reliability of data are ensured, and the calculation and communication overhead is reduced. 本发明公开了一种基于对称同态加密算法的高效联邦学习安全聚合方法,多个用户将用中央服务的公钥加密局部梯度,然后将密文发送到聚合服务器;聚合服务器聚合后,将聚合密文发送给中央服务器,中央服务器解密后得到全局</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizkOwjAURNNQIOAO5gAUIYDSoiiIioo--jjjJYoXfZsit8dCHABNMYverKupV8pKC5-FwgimjFHMIPbWa5Eg3wxBWjM0ZRu8cMgmjOJFqYClp8WVia0UJrgijqZkeMlL_B5o1oFtNm5brRTNCbufb6r9rX929wNiGJAiSXjkoXvUdXu8nJr2fG3-YT4ax0I-</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>WANG RONG</creator><creator>XIONG LING</creator><creator>YANG XINGCHUN</creator><creator>GENG JIAZHOU</creator><creator>LIU ZHICAI</creator><scope>EVB</scope></search><sort><creationdate>20240628</creationdate><title>Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm</title><author>WANG RONG ; XIONG LING ; YANG XINGCHUN ; GENG JIAZHOU ; LIU ZHICAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118264385A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG RONG</creatorcontrib><creatorcontrib>XIONG LING</creatorcontrib><creatorcontrib>YANG XINGCHUN</creatorcontrib><creatorcontrib>GENG JIAZHOU</creatorcontrib><creatorcontrib>LIU ZHICAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG RONG</au><au>XIONG LING</au><au>YANG XINGCHUN</au><au>GENG JIAZHOU</au><au>LIU ZHICAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm</title><date>2024-06-28</date><risdate>2024</risdate><abstract>The invention discloses an efficient federal learning security aggregation method based on a symmetric homomorphic encryption algorithm, and the method comprises the steps: encrypting a local gradient by a plurality of users through a public key of a central service, and then transmitting a ciphertext to an aggregation server; after aggregation, the aggregation server sends an aggregation ciphertext to the central server, and the central server decrypts the aggregation ciphertext to obtain a global gradient; according to the technical scheme provided by the invention, a homomorphic signature scheme is adopted to verify global model parameters, so that the correctness of an aggregation result is ensured, potential threats such as privacy disclosure and data forgery can be overcome in federated learning, the security and reliability of data are ensured, and the calculation and communication overhead is reduced. 本发明公开了一种基于对称同态加密算法的高效联邦学习安全聚合方法,多个用户将用中央服务的公钥加密局部梯度,然后将密文发送到聚合服务器;聚合服务器聚合后,将聚合密文发送给中央服务器,中央服务器解密后得到全局</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118264385A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Efficient federated learning secure aggregation method based on symmetric homomorphic encryption algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20RONG&rft.date=2024-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118264385A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true