Double-layer-order product quality prediction method based on residual error correction

In traditional production management, the hysteresis quality of quality prediction may cause a large number of unqualified products. Therefore, the invention provides a double-layer-order product quality prediction method based on residual error correction, and the method comprises the steps: firstl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU XINSHENG, CHEN XINHANG, HUANG SIYUAN, CAO LI, OH SONG TAEK
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU XINSHENG
CHEN XINHANG
HUANG SIYUAN
CAO LI
OH SONG TAEK
description In traditional production management, the hysteresis quality of quality prediction may cause a large number of unqualified products. Therefore, the invention provides a double-layer-order product quality prediction method based on residual error correction, and the method comprises the steps: firstly predicting the processing parameters through a random forest algorithm, and guaranteeing the parameter integrity; secondly, analyzing parameters by using a regression model constructed by combining a genetic algorithm and a fully connected neural network (NSGA-FCNN), and predicting quality features and residual errors; in order to solve the problem of low prediction precision, residual error correction is carried out by adopting residual error analysis to train an NSGA-FCNN model. Finally, a product quality prediction result and a residual error correction result are combined to form a double-layer-order product quality prediction method. The quality prediction value obtained through the method is compared with t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118246592A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118246592A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118246592A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEuDqLew_ECMrT-oKNUxclJcCxp8omB2BNPkqF3bxAvwOnlhWda3Y-cew_l9QhRLBZCQdhmk-idtXdpLA_rTHI80AvpyZZ6HWGpvCA6WxhBhIUMi-Ar59XkoX3E4tdZtTyfbu1FIXCHGLTBgNS117reNevtZt8cVv-YD7etOqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Double-layer-order product quality prediction method based on residual error correction</title><source>esp@cenet</source><creator>XU XINSHENG ; CHEN XINHANG ; HUANG SIYUAN ; CAO LI ; OH SONG TAEK</creator><creatorcontrib>XU XINSHENG ; CHEN XINHANG ; HUANG SIYUAN ; CAO LI ; OH SONG TAEK</creatorcontrib><description>In traditional production management, the hysteresis quality of quality prediction may cause a large number of unqualified products. Therefore, the invention provides a double-layer-order product quality prediction method based on residual error correction, and the method comprises the steps: firstly predicting the processing parameters through a random forest algorithm, and guaranteeing the parameter integrity; secondly, analyzing parameters by using a regression model constructed by combining a genetic algorithm and a fully connected neural network (NSGA-FCNN), and predicting quality features and residual errors; in order to solve the problem of low prediction precision, residual error correction is carried out by adopting residual error analysis to train an NSGA-FCNN model. Finally, a product quality prediction result and a residual error correction result are combined to form a double-layer-order product quality prediction method. The quality prediction value obtained through the method is compared with t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240625&amp;DB=EPODOC&amp;CC=CN&amp;NR=118246592A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240625&amp;DB=EPODOC&amp;CC=CN&amp;NR=118246592A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU XINSHENG</creatorcontrib><creatorcontrib>CHEN XINHANG</creatorcontrib><creatorcontrib>HUANG SIYUAN</creatorcontrib><creatorcontrib>CAO LI</creatorcontrib><creatorcontrib>OH SONG TAEK</creatorcontrib><title>Double-layer-order product quality prediction method based on residual error correction</title><description>In traditional production management, the hysteresis quality of quality prediction may cause a large number of unqualified products. Therefore, the invention provides a double-layer-order product quality prediction method based on residual error correction, and the method comprises the steps: firstly predicting the processing parameters through a random forest algorithm, and guaranteeing the parameter integrity; secondly, analyzing parameters by using a regression model constructed by combining a genetic algorithm and a fully connected neural network (NSGA-FCNN), and predicting quality features and residual errors; in order to solve the problem of low prediction precision, residual error correction is carried out by adopting residual error analysis to train an NSGA-FCNN model. Finally, a product quality prediction result and a residual error correction result are combined to form a double-layer-order product quality prediction method. The quality prediction value obtained through the method is compared with t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEuDqLew_ECMrT-oKNUxclJcCxp8omB2BNPkqF3bxAvwOnlhWda3Y-cew_l9QhRLBZCQdhmk-idtXdpLA_rTHI80AvpyZZ6HWGpvCA6WxhBhIUMi-Ar59XkoX3E4tdZtTyfbu1FIXCHGLTBgNS117reNevtZt8cVv-YD7etOqs</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>XU XINSHENG</creator><creator>CHEN XINHANG</creator><creator>HUANG SIYUAN</creator><creator>CAO LI</creator><creator>OH SONG TAEK</creator><scope>EVB</scope></search><sort><creationdate>20240625</creationdate><title>Double-layer-order product quality prediction method based on residual error correction</title><author>XU XINSHENG ; CHEN XINHANG ; HUANG SIYUAN ; CAO LI ; OH SONG TAEK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118246592A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XU XINSHENG</creatorcontrib><creatorcontrib>CHEN XINHANG</creatorcontrib><creatorcontrib>HUANG SIYUAN</creatorcontrib><creatorcontrib>CAO LI</creatorcontrib><creatorcontrib>OH SONG TAEK</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU XINSHENG</au><au>CHEN XINHANG</au><au>HUANG SIYUAN</au><au>CAO LI</au><au>OH SONG TAEK</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Double-layer-order product quality prediction method based on residual error correction</title><date>2024-06-25</date><risdate>2024</risdate><abstract>In traditional production management, the hysteresis quality of quality prediction may cause a large number of unqualified products. Therefore, the invention provides a double-layer-order product quality prediction method based on residual error correction, and the method comprises the steps: firstly predicting the processing parameters through a random forest algorithm, and guaranteeing the parameter integrity; secondly, analyzing parameters by using a regression model constructed by combining a genetic algorithm and a fully connected neural network (NSGA-FCNN), and predicting quality features and residual errors; in order to solve the problem of low prediction precision, residual error correction is carried out by adopting residual error analysis to train an NSGA-FCNN model. Finally, a product quality prediction result and a residual error correction result are combined to form a double-layer-order product quality prediction method. The quality prediction value obtained through the method is compared with t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118246592A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Double-layer-order product quality prediction method based on residual error correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20XINSHENG&rft.date=2024-06-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118246592A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true