Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method

The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN CHENGYI, HUANG FEIYANG, WANG SHENGWEI, LIN XIN, CHEN LIANGYIN, NIU YI, REN YI, ZHANG YUANYUAN, FENG KANGHUI, LIU JUNCAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN CHENGYI
HUANG FEIYANG
WANG SHENGWEI
LIN XIN
CHEN LIANGYIN
NIU YI
REN YI
ZHANG YUANYUAN
FENG KANGHUI
LIU JUNCAI
description The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved. 本发明涉及
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228261A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228261A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228261A3</originalsourceid><addsrcrecordid>eNqNjL0OgjAURlkcjPoO9QEYqIlhNQTi5ORObulXvEl_SFs0vr0QfQCnc4aTsy1Mx-McIQwor1SsOWLIHDxZYea0iIBT0Jr9WCpK0MJwdC9a6udsPSIptpzfIrFjS3FVjfydCIf8CHpfbAzZhMOPu-LYtffmWmIKPdJEAzxy39yqqpaylufqcvqn-QAXdkDf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><source>esp@cenet</source><creator>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</creator><creatorcontrib>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</creatorcontrib><description>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved. 本发明涉及</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228261A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228261A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN CHENGYI</creatorcontrib><creatorcontrib>HUANG FEIYANG</creatorcontrib><creatorcontrib>WANG SHENGWEI</creatorcontrib><creatorcontrib>LIN XIN</creatorcontrib><creatorcontrib>CHEN LIANGYIN</creatorcontrib><creatorcontrib>NIU YI</creatorcontrib><creatorcontrib>REN YI</creatorcontrib><creatorcontrib>ZHANG YUANYUAN</creatorcontrib><creatorcontrib>FENG KANGHUI</creatorcontrib><creatorcontrib>LIU JUNCAI</creatorcontrib><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><description>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved. 本发明涉及</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0OgjAURlkcjPoO9QEYqIlhNQTi5ORObulXvEl_SFs0vr0QfQCnc4aTsy1Mx-McIQwor1SsOWLIHDxZYea0iIBT0Jr9WCpK0MJwdC9a6udsPSIptpzfIrFjS3FVjfydCIf8CHpfbAzZhMOPu-LYtffmWmIKPdJEAzxy39yqqpaylufqcvqn-QAXdkDf</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>LIN CHENGYI</creator><creator>HUANG FEIYANG</creator><creator>WANG SHENGWEI</creator><creator>LIN XIN</creator><creator>CHEN LIANGYIN</creator><creator>NIU YI</creator><creator>REN YI</creator><creator>ZHANG YUANYUAN</creator><creator>FENG KANGHUI</creator><creator>LIU JUNCAI</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><author>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228261A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN CHENGYI</creatorcontrib><creatorcontrib>HUANG FEIYANG</creatorcontrib><creatorcontrib>WANG SHENGWEI</creatorcontrib><creatorcontrib>LIN XIN</creatorcontrib><creatorcontrib>CHEN LIANGYIN</creatorcontrib><creatorcontrib>NIU YI</creatorcontrib><creatorcontrib>REN YI</creatorcontrib><creatorcontrib>ZHANG YUANYUAN</creatorcontrib><creatorcontrib>FENG KANGHUI</creatorcontrib><creatorcontrib>LIU JUNCAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN CHENGYI</au><au>HUANG FEIYANG</au><au>WANG SHENGWEI</au><au>LIN XIN</au><au>CHEN LIANGYIN</au><au>NIU YI</au><au>REN YI</au><au>ZHANG YUANYUAN</au><au>FENG KANGHUI</au><au>LIU JUNCAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved. 本发明涉及</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118228261A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20CHENGYI&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228261A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true