Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method
The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a relat...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIN CHENGYI HUANG FEIYANG WANG SHENGWEI LIN XIN CHEN LIANGYIN NIU YI REN YI ZHANG YUANYUAN FENG KANGHUI LIU JUNCAI |
description | The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved.
本发明涉及 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228261A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228261A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228261A3</originalsourceid><addsrcrecordid>eNqNjL0OgjAURlkcjPoO9QEYqIlhNQTi5ORObulXvEl_SFs0vr0QfQCnc4aTsy1Mx-McIQwor1SsOWLIHDxZYea0iIBT0Jr9WCpK0MJwdC9a6udsPSIptpzfIrFjS3FVjfydCIf8CHpfbAzZhMOPu-LYtffmWmIKPdJEAzxy39yqqpaylufqcvqn-QAXdkDf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><source>esp@cenet</source><creator>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</creator><creatorcontrib>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</creatorcontrib><description>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved.
本发明涉及</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228261A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228261A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN CHENGYI</creatorcontrib><creatorcontrib>HUANG FEIYANG</creatorcontrib><creatorcontrib>WANG SHENGWEI</creatorcontrib><creatorcontrib>LIN XIN</creatorcontrib><creatorcontrib>CHEN LIANGYIN</creatorcontrib><creatorcontrib>NIU YI</creatorcontrib><creatorcontrib>REN YI</creatorcontrib><creatorcontrib>ZHANG YUANYUAN</creatorcontrib><creatorcontrib>FENG KANGHUI</creatorcontrib><creatorcontrib>LIU JUNCAI</creatorcontrib><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><description>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved.
本发明涉及</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0OgjAURlkcjPoO9QEYqIlhNQTi5ORObulXvEl_SFs0vr0QfQCnc4aTsy1Mx-McIQwor1SsOWLIHDxZYea0iIBT0Jr9WCpK0MJwdC9a6udsPSIptpzfIrFjS3FVjfydCIf8CHpfbAzZhMOPu-LYtffmWmIKPdJEAzxy39yqqpaylufqcvqn-QAXdkDf</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>LIN CHENGYI</creator><creator>HUANG FEIYANG</creator><creator>WANG SHENGWEI</creator><creator>LIN XIN</creator><creator>CHEN LIANGYIN</creator><creator>NIU YI</creator><creator>REN YI</creator><creator>ZHANG YUANYUAN</creator><creator>FENG KANGHUI</creator><creator>LIU JUNCAI</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><author>LIN CHENGYI ; HUANG FEIYANG ; WANG SHENGWEI ; LIN XIN ; CHEN LIANGYIN ; NIU YI ; REN YI ; ZHANG YUANYUAN ; FENG KANGHUI ; LIU JUNCAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228261A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN CHENGYI</creatorcontrib><creatorcontrib>HUANG FEIYANG</creatorcontrib><creatorcontrib>WANG SHENGWEI</creatorcontrib><creatorcontrib>LIN XIN</creatorcontrib><creatorcontrib>CHEN LIANGYIN</creatorcontrib><creatorcontrib>NIU YI</creatorcontrib><creatorcontrib>REN YI</creatorcontrib><creatorcontrib>ZHANG YUANYUAN</creatorcontrib><creatorcontrib>FENG KANGHUI</creatorcontrib><creatorcontrib>LIU JUNCAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN CHENGYI</au><au>HUANG FEIYANG</au><au>WANG SHENGWEI</au><au>LIN XIN</au><au>CHEN LIANGYIN</au><au>NIU YI</au><au>REN YI</au><au>ZHANG YUANYUAN</au><au>FENG KANGHUI</au><au>LIU JUNCAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to a firmware vulnerability similarity detection method based on graph feature bidirectional fusion embedding, and the method specifically comprises the steps: extracting a firmware function control flow graph: carrying out the disassembly of a firmware function through a related tool, namely IDA Pro, extracting the control flow graph, and carrying out the instruction feature conversion of each statement, performing instruction statement feature vector conversion: performing context influence extraction on instruction statement vectors through an attention mechanism, performing basic block feature fusion by mixing with LSTM, and performing graph embedding feature vector extraction: performing vector fusion on firmware function features by using a graph embedding network; and similarity detection is carried out through the Siamese network to judge whether known vulnerabilities exist or not. According to the invention, the vulnerability similarity detection precision can be improved.
本发明涉及</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118228261A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Figure feature bidirectional fusion embedding-based firmware vulnerability similarity detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20CHENGYI&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228261A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |