Speed reducer fault analysis method based on neural network

The invention relates to the technical field of fault detection, in particular to a speed reducer fault analysis method based on a neural network, and the method comprises the steps: obtaining a plurality of types of fault data sequences of a to-be-detected speed reducer; obtaining a feature scale o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHENG LAIHANG, LU YISEN, FENG PENGFEI, HE YONGMING, CHEN ERGANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHENG LAIHANG
LU YISEN
FENG PENGFEI
HE YONGMING
CHEN ERGANG
description The invention relates to the technical field of fault detection, in particular to a speed reducer fault analysis method based on a neural network, and the method comprises the steps: obtaining a plurality of types of fault data sequences of a to-be-detected speed reducer; obtaining a feature scale of each kind of monitoring sample data of the target fault; acquiring a fault response coefficient of each kind of monitoring sample data; sorting all kinds of monitoring sample data according to the fault response coefficient to obtain a transfer sequence of the target fault; according to the transmission loss degree and the feature scale of each type of monitoring sample data, obtaining a fusion weight of each type of monitoring sample data of the target fault; training a CNN auto-encoder according to the fusion weight of the monitoring sample data; and performing fault prediction on the speed reducer to be detected according to the trained CNN auto-encoder. The accuracy of the fault detection result of the speed
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228199A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228199A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228199A3</originalsourceid><addsrcrecordid>eNrjZLAOLkhNTVEoSk0pTU4tUkhLLM0pUUjMS8ypLM4sVshNLcnIT1FISiwGqsnPU8hLLS1KzAFSJeX5Rdk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoMt7Zz9DQwsjIwtDS0tGYGDUArNwvfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Speed reducer fault analysis method based on neural network</title><source>esp@cenet</source><creator>CHENG LAIHANG ; LU YISEN ; FENG PENGFEI ; HE YONGMING ; CHEN ERGANG</creator><creatorcontrib>CHENG LAIHANG ; LU YISEN ; FENG PENGFEI ; HE YONGMING ; CHEN ERGANG</creatorcontrib><description>The invention relates to the technical field of fault detection, in particular to a speed reducer fault analysis method based on a neural network, and the method comprises the steps: obtaining a plurality of types of fault data sequences of a to-be-detected speed reducer; obtaining a feature scale of each kind of monitoring sample data of the target fault; acquiring a fault response coefficient of each kind of monitoring sample data; sorting all kinds of monitoring sample data according to the fault response coefficient to obtain a transfer sequence of the target fault; according to the transmission loss degree and the feature scale of each type of monitoring sample data, obtaining a fusion weight of each type of monitoring sample data of the target fault; training a CNN auto-encoder according to the fusion weight of the monitoring sample data; and performing fault prediction on the speed reducer to be detected according to the trained CNN auto-encoder. The accuracy of the fault detection result of the speed</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228199A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228199A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHENG LAIHANG</creatorcontrib><creatorcontrib>LU YISEN</creatorcontrib><creatorcontrib>FENG PENGFEI</creatorcontrib><creatorcontrib>HE YONGMING</creatorcontrib><creatorcontrib>CHEN ERGANG</creatorcontrib><title>Speed reducer fault analysis method based on neural network</title><description>The invention relates to the technical field of fault detection, in particular to a speed reducer fault analysis method based on a neural network, and the method comprises the steps: obtaining a plurality of types of fault data sequences of a to-be-detected speed reducer; obtaining a feature scale of each kind of monitoring sample data of the target fault; acquiring a fault response coefficient of each kind of monitoring sample data; sorting all kinds of monitoring sample data according to the fault response coefficient to obtain a transfer sequence of the target fault; according to the transmission loss degree and the feature scale of each type of monitoring sample data, obtaining a fusion weight of each type of monitoring sample data of the target fault; training a CNN auto-encoder according to the fusion weight of the monitoring sample data; and performing fault prediction on the speed reducer to be detected according to the trained CNN auto-encoder. The accuracy of the fault detection result of the speed</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOLkhNTVEoSk0pTU4tUkhLLM0pUUjMS8ypLM4sVshNLcnIT1FISiwGqsnPU8hLLS1KzAFSJeX5Rdk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORWoMt7Zz9DQwsjIwtDS0tGYGDUArNwvfQ</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>CHENG LAIHANG</creator><creator>LU YISEN</creator><creator>FENG PENGFEI</creator><creator>HE YONGMING</creator><creator>CHEN ERGANG</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Speed reducer fault analysis method based on neural network</title><author>CHENG LAIHANG ; LU YISEN ; FENG PENGFEI ; HE YONGMING ; CHEN ERGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228199A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>CHENG LAIHANG</creatorcontrib><creatorcontrib>LU YISEN</creatorcontrib><creatorcontrib>FENG PENGFEI</creatorcontrib><creatorcontrib>HE YONGMING</creatorcontrib><creatorcontrib>CHEN ERGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHENG LAIHANG</au><au>LU YISEN</au><au>FENG PENGFEI</au><au>HE YONGMING</au><au>CHEN ERGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Speed reducer fault analysis method based on neural network</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to the technical field of fault detection, in particular to a speed reducer fault analysis method based on a neural network, and the method comprises the steps: obtaining a plurality of types of fault data sequences of a to-be-detected speed reducer; obtaining a feature scale of each kind of monitoring sample data of the target fault; acquiring a fault response coefficient of each kind of monitoring sample data; sorting all kinds of monitoring sample data according to the fault response coefficient to obtain a transfer sequence of the target fault; according to the transmission loss degree and the feature scale of each type of monitoring sample data, obtaining a fusion weight of each type of monitoring sample data of the target fault; training a CNN auto-encoder according to the fusion weight of the monitoring sample data; and performing fault prediction on the speed reducer to be detected according to the trained CNN auto-encoder. The accuracy of the fault detection result of the speed</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118228199A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Speed reducer fault analysis method based on neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHENG%20LAIHANG&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228199A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true