Electric power multi-modal entity relationship extraction method and device based on transfer learning
The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | QIU ZHEN WANG YANRONG LU DAWEI LIANG YI WANG QIULIN ZHANG XIAODONG ZHENG LUEXING ZHUANG LI ZHANG LEZHEN ZHOU LONG SU JIANGWEN HOU YANLUN |
description | The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228192A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228192A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228192A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywFSJDShRFEQFRV9tNgvxJKztuzld3uCxAGonkYzesti6DyMJmcohicSTXevrpyCZU8QdfqmBM_qguTRRcJLE5sv0gQdgyUWSxYPZ0BXzrA0q7mRPMx3HpzEyW1dLAb2GZvfrortsbu0pxIx9MiRDQTat-eqauq6qfb1YfdP8wHQI0Az</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><source>esp@cenet</source><creator>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</creator><creatorcontrib>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</creatorcontrib><description>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228192A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228192A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIU ZHEN</creatorcontrib><creatorcontrib>WANG YANRONG</creatorcontrib><creatorcontrib>LU DAWEI</creatorcontrib><creatorcontrib>LIANG YI</creatorcontrib><creatorcontrib>WANG QIULIN</creatorcontrib><creatorcontrib>ZHANG XIAODONG</creatorcontrib><creatorcontrib>ZHENG LUEXING</creatorcontrib><creatorcontrib>ZHUANG LI</creatorcontrib><creatorcontrib>ZHANG LEZHEN</creatorcontrib><creatorcontrib>ZHOU LONG</creatorcontrib><creatorcontrib>SU JIANGWEN</creatorcontrib><creatorcontrib>HOU YANLUN</creatorcontrib><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><description>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywFSJDShRFEQFRV9tNgvxJKztuzld3uCxAGonkYzesti6DyMJmcohicSTXevrpyCZU8QdfqmBM_qguTRRcJLE5sv0gQdgyUWSxYPZ0BXzrA0q7mRPMx3HpzEyW1dLAb2GZvfrortsbu0pxIx9MiRDQTat-eqauq6qfb1YfdP8wHQI0Az</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>QIU ZHEN</creator><creator>WANG YANRONG</creator><creator>LU DAWEI</creator><creator>LIANG YI</creator><creator>WANG QIULIN</creator><creator>ZHANG XIAODONG</creator><creator>ZHENG LUEXING</creator><creator>ZHUANG LI</creator><creator>ZHANG LEZHEN</creator><creator>ZHOU LONG</creator><creator>SU JIANGWEN</creator><creator>HOU YANLUN</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><author>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228192A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIU ZHEN</creatorcontrib><creatorcontrib>WANG YANRONG</creatorcontrib><creatorcontrib>LU DAWEI</creatorcontrib><creatorcontrib>LIANG YI</creatorcontrib><creatorcontrib>WANG QIULIN</creatorcontrib><creatorcontrib>ZHANG XIAODONG</creatorcontrib><creatorcontrib>ZHENG LUEXING</creatorcontrib><creatorcontrib>ZHUANG LI</creatorcontrib><creatorcontrib>ZHANG LEZHEN</creatorcontrib><creatorcontrib>ZHOU LONG</creatorcontrib><creatorcontrib>SU JIANGWEN</creatorcontrib><creatorcontrib>HOU YANLUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIU ZHEN</au><au>WANG YANRONG</au><au>LU DAWEI</au><au>LIANG YI</au><au>WANG QIULIN</au><au>ZHANG XIAODONG</au><au>ZHENG LUEXING</au><au>ZHUANG LI</au><au>ZHANG LEZHEN</au><au>ZHOU LONG</au><au>SU JIANGWEN</au><au>HOU YANLUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118228192A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Electric power multi-modal entity relationship extraction method and device based on transfer learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIU%20ZHEN&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228192A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |