Electric power multi-modal entity relationship extraction method and device based on transfer learning

The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QIU ZHEN, WANG YANRONG, LU DAWEI, LIANG YI, WANG QIULIN, ZHANG XIAODONG, ZHENG LUEXING, ZHUANG LI, ZHANG LEZHEN, ZHOU LONG, SU JIANGWEN, HOU YANLUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QIU ZHEN
WANG YANRONG
LU DAWEI
LIANG YI
WANG QIULIN
ZHANG XIAODONG
ZHENG LUEXING
ZHUANG LI
ZHANG LEZHEN
ZHOU LONG
SU JIANGWEN
HOU YANLUN
description The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228192A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228192A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228192A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywFSJDShRFEQFRV9tNgvxJKztuzld3uCxAGonkYzesti6DyMJmcohicSTXevrpyCZU8QdfqmBM_qguTRRcJLE5sv0gQdgyUWSxYPZ0BXzrA0q7mRPMx3HpzEyW1dLAb2GZvfrortsbu0pxIx9MiRDQTat-eqauq6qfb1YfdP8wHQI0Az</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><source>esp@cenet</source><creator>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</creator><creatorcontrib>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</creatorcontrib><description>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228192A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240621&amp;DB=EPODOC&amp;CC=CN&amp;NR=118228192A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIU ZHEN</creatorcontrib><creatorcontrib>WANG YANRONG</creatorcontrib><creatorcontrib>LU DAWEI</creatorcontrib><creatorcontrib>LIANG YI</creatorcontrib><creatorcontrib>WANG QIULIN</creatorcontrib><creatorcontrib>ZHANG XIAODONG</creatorcontrib><creatorcontrib>ZHENG LUEXING</creatorcontrib><creatorcontrib>ZHUANG LI</creatorcontrib><creatorcontrib>ZHANG LEZHEN</creatorcontrib><creatorcontrib>ZHOU LONG</creatorcontrib><creatorcontrib>SU JIANGWEN</creatorcontrib><creatorcontrib>HOU YANLUN</creatorcontrib><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><description>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywFSJDShRFEQFRV9tNgvxJKztuzld3uCxAGonkYzesti6DyMJmcohicSTXevrpyCZU8QdfqmBM_qguTRRcJLE5sv0gQdgyUWSxYPZ0BXzrA0q7mRPMx3HpzEyW1dLAb2GZvfrortsbu0pxIx9MiRDQTat-eqauq6qfb1YfdP8wHQI0Az</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>QIU ZHEN</creator><creator>WANG YANRONG</creator><creator>LU DAWEI</creator><creator>LIANG YI</creator><creator>WANG QIULIN</creator><creator>ZHANG XIAODONG</creator><creator>ZHENG LUEXING</creator><creator>ZHUANG LI</creator><creator>ZHANG LEZHEN</creator><creator>ZHOU LONG</creator><creator>SU JIANGWEN</creator><creator>HOU YANLUN</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><author>QIU ZHEN ; WANG YANRONG ; LU DAWEI ; LIANG YI ; WANG QIULIN ; ZHANG XIAODONG ; ZHENG LUEXING ; ZHUANG LI ; ZHANG LEZHEN ; ZHOU LONG ; SU JIANGWEN ; HOU YANLUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228192A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIU ZHEN</creatorcontrib><creatorcontrib>WANG YANRONG</creatorcontrib><creatorcontrib>LU DAWEI</creatorcontrib><creatorcontrib>LIANG YI</creatorcontrib><creatorcontrib>WANG QIULIN</creatorcontrib><creatorcontrib>ZHANG XIAODONG</creatorcontrib><creatorcontrib>ZHENG LUEXING</creatorcontrib><creatorcontrib>ZHUANG LI</creatorcontrib><creatorcontrib>ZHANG LEZHEN</creatorcontrib><creatorcontrib>ZHOU LONG</creatorcontrib><creatorcontrib>SU JIANGWEN</creatorcontrib><creatorcontrib>HOU YANLUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIU ZHEN</au><au>WANG YANRONG</au><au>LU DAWEI</au><au>LIANG YI</au><au>WANG QIULIN</au><au>ZHANG XIAODONG</au><au>ZHENG LUEXING</au><au>ZHUANG LI</au><au>ZHANG LEZHEN</au><au>ZHOU LONG</au><au>SU JIANGWEN</au><au>HOU YANLUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric power multi-modal entity relationship extraction method and device based on transfer learning</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to a transfer learning-based electric power multi-modal entity relationship extraction method. The method comprises the following steps of collecting and preprocessing electric power text and image data; constructing a cross-modal relation feature extraction model to obtain an advanced feature rt of the multi-modal data in the power field and an advanced feature rs of the multi-modal corpus in the open field; constructing a transfer learning-based power multi-modal entity relationship extraction model: adapting the high-level features rs to the high-level features rt corresponding to the power field to minimize the difference value between the high-level features rt and rs, and inputting the high-level features rt and rs with the difference value smaller than a preset threshold value as results to the next layer; and the classification relation output layer outputs a relation identification result. The method has the beneficial effects that rich corpora in other fields are utilized to ex</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118228192A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Electric power multi-modal entity relationship extraction method and device based on transfer learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIU%20ZHEN&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228192A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true