Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture
The invention relates to the technical field of natural language processing, and provides a multi-feature fusion visual dialogue sentiment analysis method of a hybrid model architecture, which comprises the following steps of: acquiring dialogue data containing text information and video information...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG SHUAI TANG WENZHONG TANG HONGMEI WANG YANYANG ZHU DIXIONGXIAO |
description | The invention relates to the technical field of natural language processing, and provides a multi-feature fusion visual dialogue sentiment analysis method of a hybrid model architecture, which comprises the following steps of: acquiring dialogue data containing text information and video information, intercepting the text information according to a statement length, collecting a face image sequence in the video information, and performing sentiment analysis on the face image sequence; obtaining preprocessed text data and image data; based on paired and grouped texts in the preprocessed text data, extracting text features of the preprocessed text data; based on the face image sequence, extracting image features of the preprocessed image data; the text features and the image features are fused, emotion classification is carried out, and emotion categories are obtained; training the sentiment analysis model to obtain a trained sentiment analysis model; according to the method, the effectiveness of conversation e |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118228156A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118228156A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118228156A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQANNYiPqH9QEpElHSSlBstLKzCGtuL1m4uw23d0J-r4IPsJlphlkWj2t2iUtLmHIksFlZArxYMzowjE6GTKAUEvsPAAO6WVnBUxrFgFgY52dkA14MOcDYj5yo_97WxcKiU9r8vCq259O9vZQ0SUc6YU-BUtfeqqqp66baH467f5o32gY8Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture</title><source>esp@cenet</source><creator>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; WANG YANYANG ; ZHU DIXIONGXIAO</creator><creatorcontrib>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; WANG YANYANG ; ZHU DIXIONGXIAO</creatorcontrib><description>The invention relates to the technical field of natural language processing, and provides a multi-feature fusion visual dialogue sentiment analysis method of a hybrid model architecture, which comprises the following steps of: acquiring dialogue data containing text information and video information, intercepting the text information according to a statement length, collecting a face image sequence in the video information, and performing sentiment analysis on the face image sequence; obtaining preprocessed text data and image data; based on paired and grouped texts in the preprocessed text data, extracting text features of the preprocessed text data; based on the face image sequence, extracting image features of the preprocessed image data; the text features and the image features are fused, emotion classification is carried out, and emotion categories are obtained; training the sentiment analysis model to obtain a trained sentiment analysis model; according to the method, the effectiveness of conversation e</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228156A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118228156A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG SHUAI</creatorcontrib><creatorcontrib>TANG WENZHONG</creatorcontrib><creatorcontrib>TANG HONGMEI</creatorcontrib><creatorcontrib>WANG YANYANG</creatorcontrib><creatorcontrib>ZHU DIXIONGXIAO</creatorcontrib><title>Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture</title><description>The invention relates to the technical field of natural language processing, and provides a multi-feature fusion visual dialogue sentiment analysis method of a hybrid model architecture, which comprises the following steps of: acquiring dialogue data containing text information and video information, intercepting the text information according to a statement length, collecting a face image sequence in the video information, and performing sentiment analysis on the face image sequence; obtaining preprocessed text data and image data; based on paired and grouped texts in the preprocessed text data, extracting text features of the preprocessed text data; based on the face image sequence, extracting image features of the preprocessed image data; the text features and the image features are fused, emotion classification is carried out, and emotion categories are obtained; training the sentiment analysis model to obtain a trained sentiment analysis model; according to the method, the effectiveness of conversation e</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQANNYiPqH9QEpElHSSlBstLKzCGtuL1m4uw23d0J-r4IPsJlphlkWj2t2iUtLmHIksFlZArxYMzowjE6GTKAUEvsPAAO6WVnBUxrFgFgY52dkA14MOcDYj5yo_97WxcKiU9r8vCq259O9vZQ0SUc6YU-BUtfeqqqp66baH467f5o32gY8Qw</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>WANG SHUAI</creator><creator>TANG WENZHONG</creator><creator>TANG HONGMEI</creator><creator>WANG YANYANG</creator><creator>ZHU DIXIONGXIAO</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture</title><author>WANG SHUAI ; TANG WENZHONG ; TANG HONGMEI ; WANG YANYANG ; ZHU DIXIONGXIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118228156A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG SHUAI</creatorcontrib><creatorcontrib>TANG WENZHONG</creatorcontrib><creatorcontrib>TANG HONGMEI</creatorcontrib><creatorcontrib>WANG YANYANG</creatorcontrib><creatorcontrib>ZHU DIXIONGXIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG SHUAI</au><au>TANG WENZHONG</au><au>TANG HONGMEI</au><au>WANG YANYANG</au><au>ZHU DIXIONGXIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention relates to the technical field of natural language processing, and provides a multi-feature fusion visual dialogue sentiment analysis method of a hybrid model architecture, which comprises the following steps of: acquiring dialogue data containing text information and video information, intercepting the text information according to a statement length, collecting a face image sequence in the video information, and performing sentiment analysis on the face image sequence; obtaining preprocessed text data and image data; based on paired and grouped texts in the preprocessed text data, extracting text features of the preprocessed text data; based on the face image sequence, extracting image features of the preprocessed image data; the text features and the image features are fused, emotion classification is carried out, and emotion categories are obtained; training the sentiment analysis model to obtain a trained sentiment analysis model; according to the method, the effectiveness of conversation e</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118228156A |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Multi-feature fusion visual dialogue sentiment analysis method of hybrid model architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20SHUAI&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118228156A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |