Ocv valuation method and system based on regression model, and electronic equipment
The invention discloses an ocv valuation method and system based on a regression model and electronic equipment, and relates to the technical field of new energy, and the method comprises the steps: obtaining a real-time off-line voltage value of a dynamic reconfigurable battery module; inputting th...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI CHAOFAN WANG YUNFANG ZHANG MING LI XUEFENG GAO HONG BAI XUHENG CI SONG YANG FENG |
description | The invention discloses an ocv valuation method and system based on a regression model and electronic equipment, and relates to the technical field of new energy, and the method comprises the steps: obtaining a real-time off-line voltage value of a dynamic reconfigurable battery module; inputting the real-time off-line voltage value into an ocv estimation prediction model to obtain an on-line open-circuit voltage value; wherein the ocv estimation prediction model is obtained by training a regression model by using a training set; the training set comprises off-line voltage value samples and corresponding open-circuit voltage value samples of the dynamic reconfigurable battery module. The open-circuit voltage of the lithium battery can be obtained on line.
本发明公开一种基于回归模型的ocv估值方法、系统及电子设备,涉及新能源技术领域,方法包括:获取动态可重构电池模组的实时离线电压值;将实时离线电压值输入ocv估值预测模型,得到在线开路电压值;其中,ocv估值预测模型是应用训练集对回归模型进行训练得到的;训练集包括动态可重构电池模组的离线电压值样本和对应的开路电压值样本。本发明能够在线获得锂电池的开路电压。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118227961A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118227961A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118227961A3</originalsourceid><addsrcrecordid>eNqNyjsKAjEURuE0FqLu4dprkRF8lDIoVlpoP8TkHw3kZW5mwN0rgwuwOsX5xuJ60T31ynWq2BjIozyjIRUM8ZsLPN0Vw9B3ZTwymAcVDdxiUHDQJcdgNeHV2eQRylSMWuUYs18nYn483OrTEik24KQ0AkpTn6XcVtVmt5b71T_mA1eqOIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ocv valuation method and system based on regression model, and electronic equipment</title><source>esp@cenet</source><creator>LI CHAOFAN ; WANG YUNFANG ; ZHANG MING ; LI XUEFENG ; GAO HONG ; BAI XUHENG ; CI SONG ; YANG FENG</creator><creatorcontrib>LI CHAOFAN ; WANG YUNFANG ; ZHANG MING ; LI XUEFENG ; GAO HONG ; BAI XUHENG ; CI SONG ; YANG FENG</creatorcontrib><description>The invention discloses an ocv valuation method and system based on a regression model and electronic equipment, and relates to the technical field of new energy, and the method comprises the steps: obtaining a real-time off-line voltage value of a dynamic reconfigurable battery module; inputting the real-time off-line voltage value into an ocv estimation prediction model to obtain an on-line open-circuit voltage value; wherein the ocv estimation prediction model is obtained by training a regression model by using a training set; the training set comprises off-line voltage value samples and corresponding open-circuit voltage value samples of the dynamic reconfigurable battery module. The open-circuit voltage of the lithium battery can be obtained on line.
本发明公开一种基于回归模型的ocv估值方法、系统及电子设备,涉及新能源技术领域,方法包括:获取动态可重构电池模组的实时离线电压值;将实时离线电压值输入ocv估值预测模型,得到在线开路电压值;其中,ocv估值预测模型是应用训练集对回归模型进行训练得到的;训练集包括动态可重构电池模组的离线电压值样本和对应的开路电压值样本。本发明能够在线获得锂电池的开路电压。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118227961A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240621&DB=EPODOC&CC=CN&NR=118227961A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHAOFAN</creatorcontrib><creatorcontrib>WANG YUNFANG</creatorcontrib><creatorcontrib>ZHANG MING</creatorcontrib><creatorcontrib>LI XUEFENG</creatorcontrib><creatorcontrib>GAO HONG</creatorcontrib><creatorcontrib>BAI XUHENG</creatorcontrib><creatorcontrib>CI SONG</creatorcontrib><creatorcontrib>YANG FENG</creatorcontrib><title>Ocv valuation method and system based on regression model, and electronic equipment</title><description>The invention discloses an ocv valuation method and system based on a regression model and electronic equipment, and relates to the technical field of new energy, and the method comprises the steps: obtaining a real-time off-line voltage value of a dynamic reconfigurable battery module; inputting the real-time off-line voltage value into an ocv estimation prediction model to obtain an on-line open-circuit voltage value; wherein the ocv estimation prediction model is obtained by training a regression model by using a training set; the training set comprises off-line voltage value samples and corresponding open-circuit voltage value samples of the dynamic reconfigurable battery module. The open-circuit voltage of the lithium battery can be obtained on line.
本发明公开一种基于回归模型的ocv估值方法、系统及电子设备,涉及新能源技术领域,方法包括:获取动态可重构电池模组的实时离线电压值;将实时离线电压值输入ocv估值预测模型,得到在线开路电压值;其中,ocv估值预测模型是应用训练集对回归模型进行训练得到的;训练集包括动态可重构电池模组的离线电压值样本和对应的开路电压值样本。本发明能够在线获得锂电池的开路电压。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKAjEURuE0FqLu4dprkRF8lDIoVlpoP8TkHw3kZW5mwN0rgwuwOsX5xuJ60T31ynWq2BjIozyjIRUM8ZsLPN0Vw9B3ZTwymAcVDdxiUHDQJcdgNeHV2eQRylSMWuUYs18nYn483OrTEik24KQ0AkpTn6XcVtVmt5b71T_mA1eqOIU</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>LI CHAOFAN</creator><creator>WANG YUNFANG</creator><creator>ZHANG MING</creator><creator>LI XUEFENG</creator><creator>GAO HONG</creator><creator>BAI XUHENG</creator><creator>CI SONG</creator><creator>YANG FENG</creator><scope>EVB</scope></search><sort><creationdate>20240621</creationdate><title>Ocv valuation method and system based on regression model, and electronic equipment</title><author>LI CHAOFAN ; WANG YUNFANG ; ZHANG MING ; LI XUEFENG ; GAO HONG ; BAI XUHENG ; CI SONG ; YANG FENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118227961A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHAOFAN</creatorcontrib><creatorcontrib>WANG YUNFANG</creatorcontrib><creatorcontrib>ZHANG MING</creatorcontrib><creatorcontrib>LI XUEFENG</creatorcontrib><creatorcontrib>GAO HONG</creatorcontrib><creatorcontrib>BAI XUHENG</creatorcontrib><creatorcontrib>CI SONG</creatorcontrib><creatorcontrib>YANG FENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHAOFAN</au><au>WANG YUNFANG</au><au>ZHANG MING</au><au>LI XUEFENG</au><au>GAO HONG</au><au>BAI XUHENG</au><au>CI SONG</au><au>YANG FENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ocv valuation method and system based on regression model, and electronic equipment</title><date>2024-06-21</date><risdate>2024</risdate><abstract>The invention discloses an ocv valuation method and system based on a regression model and electronic equipment, and relates to the technical field of new energy, and the method comprises the steps: obtaining a real-time off-line voltage value of a dynamic reconfigurable battery module; inputting the real-time off-line voltage value into an ocv estimation prediction model to obtain an on-line open-circuit voltage value; wherein the ocv estimation prediction model is obtained by training a regression model by using a training set; the training set comprises off-line voltage value samples and corresponding open-circuit voltage value samples of the dynamic reconfigurable battery module. The open-circuit voltage of the lithium battery can be obtained on line.
本发明公开一种基于回归模型的ocv估值方法、系统及电子设备,涉及新能源技术领域,方法包括:获取动态可重构电池模组的实时离线电压值;将实时离线电压值输入ocv估值预测模型,得到在线开路电压值;其中,ocv估值预测模型是应用训练集对回归模型进行训练得到的;训练集包括动态可重构电池模组的离线电压值样本和对应的开路电压值样本。本发明能够在线获得锂电池的开路电压。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118227961A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Ocv valuation method and system based on regression model, and electronic equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHAOFAN&rft.date=2024-06-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118227961A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |