Moving target anomaly detection method for fusing image super-resolution reconstruction

The invention provides a moving target anomaly detection method for fusing image super-resolution reconstruction, and relates to the technical field of computer vision. The method comprises the steps of obtaining to-be-detected first image data, inputting the first image data into a pre-constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG GUANGFU, LI HEPING, ZHANG XIAOYU, CHENG JIAN, MI LIFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG GUANGFU
LI HEPING
ZHANG XIAOYU
CHENG JIAN
MI LIFEI
description The invention provides a moving target anomaly detection method for fusing image super-resolution reconstruction, and relates to the technical field of computer vision. The method comprises the steps of obtaining to-be-detected first image data, inputting the first image data into a pre-constructed image super-resolution reconstruction network to obtain second image data after resolution enhancement, performing feature extraction on the second image data to obtain first feature map data corresponding to the second image data, and obtaining a second feature map data corresponding to the second image data; and determining first difference graph data between the first feature graph data and the reference feature graph data, and determining an abnormal region in the first image data according to the first difference graph data and the first feature graph data. Therefore, the interference of noise in the image during anomaly detection can be reduced, the robustness of anomaly detection is improved, and the accurac
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118212696A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118212696A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118212696A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAURuEuDqK-w_UBOqRC0VGK4qKT4FhC-icWmtyQ3Ai-vVh8AKezfGdZPa78GoMj0clBSAf2enrTAIGRkQN5yJMHspzIlvylo9cOlEtEqhMyT2WGCYZDllTmb10trJ4yNr-uqu35dO8uNSL3yFEbBEjf3ZTaN6ppD-1x94_5ANy_OxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Moving target anomaly detection method for fusing image super-resolution reconstruction</title><source>esp@cenet</source><creator>WANG GUANGFU ; LI HEPING ; ZHANG XIAOYU ; CHENG JIAN ; MI LIFEI</creator><creatorcontrib>WANG GUANGFU ; LI HEPING ; ZHANG XIAOYU ; CHENG JIAN ; MI LIFEI</creatorcontrib><description>The invention provides a moving target anomaly detection method for fusing image super-resolution reconstruction, and relates to the technical field of computer vision. The method comprises the steps of obtaining to-be-detected first image data, inputting the first image data into a pre-constructed image super-resolution reconstruction network to obtain second image data after resolution enhancement, performing feature extraction on the second image data to obtain first feature map data corresponding to the second image data, and obtaining a second feature map data corresponding to the second image data; and determining first difference graph data between the first feature graph data and the reference feature graph data, and determining an abnormal region in the first image data according to the first difference graph data and the first feature graph data. Therefore, the interference of noise in the image during anomaly detection can be reduced, the robustness of anomaly detection is improved, and the accurac</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118212696A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118212696A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG GUANGFU</creatorcontrib><creatorcontrib>LI HEPING</creatorcontrib><creatorcontrib>ZHANG XIAOYU</creatorcontrib><creatorcontrib>CHENG JIAN</creatorcontrib><creatorcontrib>MI LIFEI</creatorcontrib><title>Moving target anomaly detection method for fusing image super-resolution reconstruction</title><description>The invention provides a moving target anomaly detection method for fusing image super-resolution reconstruction, and relates to the technical field of computer vision. The method comprises the steps of obtaining to-be-detected first image data, inputting the first image data into a pre-constructed image super-resolution reconstruction network to obtain second image data after resolution enhancement, performing feature extraction on the second image data to obtain first feature map data corresponding to the second image data, and obtaining a second feature map data corresponding to the second image data; and determining first difference graph data between the first feature graph data and the reference feature graph data, and determining an abnormal region in the first image data according to the first difference graph data and the first feature graph data. Therefore, the interference of noise in the image during anomaly detection can be reduced, the robustness of anomaly detection is improved, and the accurac</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAURuEuDqK-w_UBOqRC0VGK4qKT4FhC-icWmtyQ3Ai-vVh8AKezfGdZPa78GoMj0clBSAf2enrTAIGRkQN5yJMHspzIlvylo9cOlEtEqhMyT2WGCYZDllTmb10trJ4yNr-uqu35dO8uNSL3yFEbBEjf3ZTaN6ppD-1x94_5ANy_OxY</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>WANG GUANGFU</creator><creator>LI HEPING</creator><creator>ZHANG XIAOYU</creator><creator>CHENG JIAN</creator><creator>MI LIFEI</creator><scope>EVB</scope></search><sort><creationdate>20240618</creationdate><title>Moving target anomaly detection method for fusing image super-resolution reconstruction</title><author>WANG GUANGFU ; LI HEPING ; ZHANG XIAOYU ; CHENG JIAN ; MI LIFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118212696A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG GUANGFU</creatorcontrib><creatorcontrib>LI HEPING</creatorcontrib><creatorcontrib>ZHANG XIAOYU</creatorcontrib><creatorcontrib>CHENG JIAN</creatorcontrib><creatorcontrib>MI LIFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG GUANGFU</au><au>LI HEPING</au><au>ZHANG XIAOYU</au><au>CHENG JIAN</au><au>MI LIFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Moving target anomaly detection method for fusing image super-resolution reconstruction</title><date>2024-06-18</date><risdate>2024</risdate><abstract>The invention provides a moving target anomaly detection method for fusing image super-resolution reconstruction, and relates to the technical field of computer vision. The method comprises the steps of obtaining to-be-detected first image data, inputting the first image data into a pre-constructed image super-resolution reconstruction network to obtain second image data after resolution enhancement, performing feature extraction on the second image data to obtain first feature map data corresponding to the second image data, and obtaining a second feature map data corresponding to the second image data; and determining first difference graph data between the first feature graph data and the reference feature graph data, and determining an abnormal region in the first image data according to the first difference graph data and the first feature graph data. Therefore, the interference of noise in the image during anomaly detection can be reduced, the robustness of anomaly detection is improved, and the accurac</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118212696A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Moving target anomaly detection method for fusing image super-resolution reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20GUANGFU&rft.date=2024-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118212696A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true