Ultrasonic image denoising method based on unsupervised learning model

The invention discloses an ultrasonic image denoising method based on an unsupervised learning model, and belongs to the technical field of image processing, and the method comprises the steps: S1, collecting a noisy ultrasonic image, carrying out the denoising processing of the noisy ultrasonic ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIE SHENGHUA, GAN JIANHONG, WANG LIPING, HE TONGLI, YIN LIXUE, ZHANG HONGMEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIE SHENGHUA
GAN JIANHONG
WANG LIPING
HE TONGLI
YIN LIXUE
ZHANG HONGMEI
description The invention discloses an ultrasonic image denoising method based on an unsupervised learning model, and belongs to the technical field of image processing, and the method comprises the steps: S1, collecting a noisy ultrasonic image, carrying out the denoising processing of the noisy ultrasonic image, and respectively constructing the sub-images of the noisy ultrasonic image and the denoised ultrasonic image; s2, constructing a loss function based on the sub-image of the noisy ultrasonic image and the sub-image of the de-noised ultrasonic image; s3, based on the loss function, determining a target function for training the ultrasonic image denoising network, and training the target function; and S4, processing a to-be-denoised ultrasonic image by using the trained ultrasonic image denoising network to obtain a denoised ultrasonic image. According to the method, the dependence of the model on a data sample is reduced, the inference ability of deep learning is fully exerted, a Noisy-Clean image pair does not n
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118212153A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118212153A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118212153A3</originalsourceid><addsrcrecordid>eNrjZHALzSkpSizOz8tMVsjMTUxPVUhJzcvPLM7MS1fITS3JyE9RSEosTk1RyM9TKM0rLi1ILSrLBPFzUhOL8sCq8lNSc3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhhZGhkaGpsaMxMWoAY6kz7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ultrasonic image denoising method based on unsupervised learning model</title><source>esp@cenet</source><creator>XIE SHENGHUA ; GAN JIANHONG ; WANG LIPING ; HE TONGLI ; YIN LIXUE ; ZHANG HONGMEI</creator><creatorcontrib>XIE SHENGHUA ; GAN JIANHONG ; WANG LIPING ; HE TONGLI ; YIN LIXUE ; ZHANG HONGMEI</creatorcontrib><description>The invention discloses an ultrasonic image denoising method based on an unsupervised learning model, and belongs to the technical field of image processing, and the method comprises the steps: S1, collecting a noisy ultrasonic image, carrying out the denoising processing of the noisy ultrasonic image, and respectively constructing the sub-images of the noisy ultrasonic image and the denoised ultrasonic image; s2, constructing a loss function based on the sub-image of the noisy ultrasonic image and the sub-image of the de-noised ultrasonic image; s3, based on the loss function, determining a target function for training the ultrasonic image denoising network, and training the target function; and S4, processing a to-be-denoised ultrasonic image by using the trained ultrasonic image denoising network to obtain a denoised ultrasonic image. According to the method, the dependence of the model on a data sample is reduced, the inference ability of deep learning is fully exerted, a Noisy-Clean image pair does not n</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118212153A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118212153A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIE SHENGHUA</creatorcontrib><creatorcontrib>GAN JIANHONG</creatorcontrib><creatorcontrib>WANG LIPING</creatorcontrib><creatorcontrib>HE TONGLI</creatorcontrib><creatorcontrib>YIN LIXUE</creatorcontrib><creatorcontrib>ZHANG HONGMEI</creatorcontrib><title>Ultrasonic image denoising method based on unsupervised learning model</title><description>The invention discloses an ultrasonic image denoising method based on an unsupervised learning model, and belongs to the technical field of image processing, and the method comprises the steps: S1, collecting a noisy ultrasonic image, carrying out the denoising processing of the noisy ultrasonic image, and respectively constructing the sub-images of the noisy ultrasonic image and the denoised ultrasonic image; s2, constructing a loss function based on the sub-image of the noisy ultrasonic image and the sub-image of the de-noised ultrasonic image; s3, based on the loss function, determining a target function for training the ultrasonic image denoising network, and training the target function; and S4, processing a to-be-denoised ultrasonic image by using the trained ultrasonic image denoising network to obtain a denoised ultrasonic image. According to the method, the dependence of the model on a data sample is reduced, the inference ability of deep learning is fully exerted, a Noisy-Clean image pair does not n</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALzSkpSizOz8tMVsjMTUxPVUhJzcvPLM7MS1fITS3JyE9RSEosTk1RyM9TKM0rLi1ILSrLBPFzUhOL8sCq8lNSc3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhhZGhkaGpsaMxMWoAY6kz7w</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>XIE SHENGHUA</creator><creator>GAN JIANHONG</creator><creator>WANG LIPING</creator><creator>HE TONGLI</creator><creator>YIN LIXUE</creator><creator>ZHANG HONGMEI</creator><scope>EVB</scope></search><sort><creationdate>20240618</creationdate><title>Ultrasonic image denoising method based on unsupervised learning model</title><author>XIE SHENGHUA ; GAN JIANHONG ; WANG LIPING ; HE TONGLI ; YIN LIXUE ; ZHANG HONGMEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118212153A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIE SHENGHUA</creatorcontrib><creatorcontrib>GAN JIANHONG</creatorcontrib><creatorcontrib>WANG LIPING</creatorcontrib><creatorcontrib>HE TONGLI</creatorcontrib><creatorcontrib>YIN LIXUE</creatorcontrib><creatorcontrib>ZHANG HONGMEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIE SHENGHUA</au><au>GAN JIANHONG</au><au>WANG LIPING</au><au>HE TONGLI</au><au>YIN LIXUE</au><au>ZHANG HONGMEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ultrasonic image denoising method based on unsupervised learning model</title><date>2024-06-18</date><risdate>2024</risdate><abstract>The invention discloses an ultrasonic image denoising method based on an unsupervised learning model, and belongs to the technical field of image processing, and the method comprises the steps: S1, collecting a noisy ultrasonic image, carrying out the denoising processing of the noisy ultrasonic image, and respectively constructing the sub-images of the noisy ultrasonic image and the denoised ultrasonic image; s2, constructing a loss function based on the sub-image of the noisy ultrasonic image and the sub-image of the de-noised ultrasonic image; s3, based on the loss function, determining a target function for training the ultrasonic image denoising network, and training the target function; and S4, processing a to-be-denoised ultrasonic image by using the trained ultrasonic image denoising network to obtain a denoised ultrasonic image. According to the method, the dependence of the model on a data sample is reduced, the inference ability of deep learning is fully exerted, a Noisy-Clean image pair does not n</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118212153A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Ultrasonic image denoising method based on unsupervised learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIE%20SHENGHUA&rft.date=2024-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118212153A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true