Intelligent test method and system for compressor cascade

The invention relates to the technical field of compressor cascade performance analysis, and discloses an intelligent test method and system for a compressor cascade, and the method comprises the steps: constructing a blade profile loss coefficient neural network prediction model and a total pressur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHI DALIN, DAI QIULIN, LI JIA, LING DAIJUN, HUANG WEINA, ZHAO JIANTONG, TANG KAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHI DALIN
DAI QIULIN
LI JIA
LING DAIJUN
HUANG WEINA
ZHAO JIANTONG
TANG KAI
description The invention relates to the technical field of compressor cascade performance analysis, and discloses an intelligent test method and system for a compressor cascade, and the method comprises the steps: constructing a blade profile loss coefficient neural network prediction model and a total pressure recovery coefficient neural network prediction model in advance, and screening all to-be-tested working condition points through a maximum and minimum distance method. Corresponding typical working condition points are obtained, and the built blade profile loss coefficient neural network prediction model and the total pressure recovery coefficient neural network prediction model are updated according to the screened typical working condition points and cascade performance test data under the typical working condition points; and finally, the blade profile performance prediction of the remaining prediction working condition points is completed through the updated neural network prediction model, the test amount ca
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118211499A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118211499A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118211499A3</originalsourceid><addsrcrecordid>eNrjZLD0zCtJzcnJTE_NK1EoSS0uUchNLcnIT1FIzEtRKK4sLknNVUjLL1JIzs8tKEotLgYxE4uTE1NSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFkaGhiaWlozExagBigy74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent test method and system for compressor cascade</title><source>esp@cenet</source><creator>SHI DALIN ; DAI QIULIN ; LI JIA ; LING DAIJUN ; HUANG WEINA ; ZHAO JIANTONG ; TANG KAI</creator><creatorcontrib>SHI DALIN ; DAI QIULIN ; LI JIA ; LING DAIJUN ; HUANG WEINA ; ZHAO JIANTONG ; TANG KAI</creatorcontrib><description>The invention relates to the technical field of compressor cascade performance analysis, and discloses an intelligent test method and system for a compressor cascade, and the method comprises the steps: constructing a blade profile loss coefficient neural network prediction model and a total pressure recovery coefficient neural network prediction model in advance, and screening all to-be-tested working condition points through a maximum and minimum distance method. Corresponding typical working condition points are obtained, and the built blade profile loss coefficient neural network prediction model and the total pressure recovery coefficient neural network prediction model are updated according to the screened typical working condition points and cascade performance test data under the typical working condition points; and finally, the blade profile performance prediction of the remaining prediction working condition points is completed through the updated neural network prediction model, the test amount ca</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118211499A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240618&amp;DB=EPODOC&amp;CC=CN&amp;NR=118211499A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI DALIN</creatorcontrib><creatorcontrib>DAI QIULIN</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>LING DAIJUN</creatorcontrib><creatorcontrib>HUANG WEINA</creatorcontrib><creatorcontrib>ZHAO JIANTONG</creatorcontrib><creatorcontrib>TANG KAI</creatorcontrib><title>Intelligent test method and system for compressor cascade</title><description>The invention relates to the technical field of compressor cascade performance analysis, and discloses an intelligent test method and system for a compressor cascade, and the method comprises the steps: constructing a blade profile loss coefficient neural network prediction model and a total pressure recovery coefficient neural network prediction model in advance, and screening all to-be-tested working condition points through a maximum and minimum distance method. Corresponding typical working condition points are obtained, and the built blade profile loss coefficient neural network prediction model and the total pressure recovery coefficient neural network prediction model are updated according to the screened typical working condition points and cascade performance test data under the typical working condition points; and finally, the blade profile performance prediction of the remaining prediction working condition points is completed through the updated neural network prediction model, the test amount ca</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD0zCtJzcnJTE_NK1EoSS0uUchNLcnIT1FIzEtRKK4sLknNVUjLL1JIzs8tKEotLgYxE4uTE1NSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFkaGhiaWlozExagBigy74</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>SHI DALIN</creator><creator>DAI QIULIN</creator><creator>LI JIA</creator><creator>LING DAIJUN</creator><creator>HUANG WEINA</creator><creator>ZHAO JIANTONG</creator><creator>TANG KAI</creator><scope>EVB</scope></search><sort><creationdate>20240618</creationdate><title>Intelligent test method and system for compressor cascade</title><author>SHI DALIN ; DAI QIULIN ; LI JIA ; LING DAIJUN ; HUANG WEINA ; ZHAO JIANTONG ; TANG KAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118211499A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI DALIN</creatorcontrib><creatorcontrib>DAI QIULIN</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>LING DAIJUN</creatorcontrib><creatorcontrib>HUANG WEINA</creatorcontrib><creatorcontrib>ZHAO JIANTONG</creatorcontrib><creatorcontrib>TANG KAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI DALIN</au><au>DAI QIULIN</au><au>LI JIA</au><au>LING DAIJUN</au><au>HUANG WEINA</au><au>ZHAO JIANTONG</au><au>TANG KAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent test method and system for compressor cascade</title><date>2024-06-18</date><risdate>2024</risdate><abstract>The invention relates to the technical field of compressor cascade performance analysis, and discloses an intelligent test method and system for a compressor cascade, and the method comprises the steps: constructing a blade profile loss coefficient neural network prediction model and a total pressure recovery coefficient neural network prediction model in advance, and screening all to-be-tested working condition points through a maximum and minimum distance method. Corresponding typical working condition points are obtained, and the built blade profile loss coefficient neural network prediction model and the total pressure recovery coefficient neural network prediction model are updated according to the screened typical working condition points and cascade performance test data under the typical working condition points; and finally, the blade profile performance prediction of the remaining prediction working condition points is completed through the updated neural network prediction model, the test amount ca</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118211499A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Intelligent test method and system for compressor cascade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20DALIN&rft.date=2024-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118211499A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true