Customer service risk evaluation system modeling method and system based on artificial intelligence

The invention discloses a customer service risk evaluation system modeling method and system based on artificial intelligence. The method comprises the steps of data collection, data preprocessing, appeal risk evaluation system construction, power failure risk evaluation system construction, load ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU HONGFU, YANG XIAOYAN, SU HONGYU, MO LIANGYUAN, ZHU DI, WANG LICHAO, HUANG KAI, WEI LIUMU, WU CHANGSHAN, LI LIN, FU HUA, ZHU NING, LIU NA, LIAO QIUYUAN, HUANG YUSHAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU HONGFU
YANG XIAOYAN
SU HONGYU
MO LIANGYUAN
ZHU DI
WANG LICHAO
HUANG KAI
WEI LIUMU
WU CHANGSHAN
LI LIN
FU HUA
ZHU NING
LIU NA
LIAO QIUYUAN
HUANG YUSHAN
description The invention discloses a customer service risk evaluation system modeling method and system based on artificial intelligence. The method comprises the steps of data collection, data preprocessing, appeal risk evaluation system construction, power failure risk evaluation system construction, load risk evaluation system construction, value added service risk evaluation system construction and customer service risk evaluation system construction. The invention relates to the technical field of power demand customer service risk prediction, in particular to a customer service risk evaluation system modeling method and system based on artificial intelligence, and the method comprises the steps: carrying out the multi-target data generation through employing a variational automatic encoder, and optimizing the data quality; multiple artificial intelligence models are constructed for prediction, so that prediction errors are reduced; according to the method, prediction results of the three models are superposed, fle
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118195302A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118195302A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118195302A3</originalsourceid><addsrcrecordid>eNqNyrsKwkAQRuE0FqK-w_gAgjEIWkpQrKzsw7j7JxncS9jZBHx7LbS3OsX55oWpR83RI5EiTWJASfRJmNiNnCUG0pdmePLRwknoyCP30RIH-1sPVlj6UE5ZWjHCjiRkOCcdgsGymLXsFKtvF8X6cr7X1w2G2EAHNgjITX0ry0N53Ffb3an6x7wBCak_Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Customer service risk evaluation system modeling method and system based on artificial intelligence</title><source>esp@cenet</source><creator>YU HONGFU ; YANG XIAOYAN ; SU HONGYU ; MO LIANGYUAN ; ZHU DI ; WANG LICHAO ; HUANG KAI ; WEI LIUMU ; WU CHANGSHAN ; LI LIN ; FU HUA ; ZHU NING ; LIU NA ; LIAO QIUYUAN ; HUANG YUSHAN</creator><creatorcontrib>YU HONGFU ; YANG XIAOYAN ; SU HONGYU ; MO LIANGYUAN ; ZHU DI ; WANG LICHAO ; HUANG KAI ; WEI LIUMU ; WU CHANGSHAN ; LI LIN ; FU HUA ; ZHU NING ; LIU NA ; LIAO QIUYUAN ; HUANG YUSHAN</creatorcontrib><description>The invention discloses a customer service risk evaluation system modeling method and system based on artificial intelligence. The method comprises the steps of data collection, data preprocessing, appeal risk evaluation system construction, power failure risk evaluation system construction, load risk evaluation system construction, value added service risk evaluation system construction and customer service risk evaluation system construction. The invention relates to the technical field of power demand customer service risk prediction, in particular to a customer service risk evaluation system modeling method and system based on artificial intelligence, and the method comprises the steps: carrying out the multi-target data generation through employing a variational automatic encoder, and optimizing the data quality; multiple artificial intelligence models are constructed for prediction, so that prediction errors are reduced; according to the method, prediction results of the three models are superposed, fle</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118195302A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118195302A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU HONGFU</creatorcontrib><creatorcontrib>YANG XIAOYAN</creatorcontrib><creatorcontrib>SU HONGYU</creatorcontrib><creatorcontrib>MO LIANGYUAN</creatorcontrib><creatorcontrib>ZHU DI</creatorcontrib><creatorcontrib>WANG LICHAO</creatorcontrib><creatorcontrib>HUANG KAI</creatorcontrib><creatorcontrib>WEI LIUMU</creatorcontrib><creatorcontrib>WU CHANGSHAN</creatorcontrib><creatorcontrib>LI LIN</creatorcontrib><creatorcontrib>FU HUA</creatorcontrib><creatorcontrib>ZHU NING</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>LIAO QIUYUAN</creatorcontrib><creatorcontrib>HUANG YUSHAN</creatorcontrib><title>Customer service risk evaluation system modeling method and system based on artificial intelligence</title><description>The invention discloses a customer service risk evaluation system modeling method and system based on artificial intelligence. The method comprises the steps of data collection, data preprocessing, appeal risk evaluation system construction, power failure risk evaluation system construction, load risk evaluation system construction, value added service risk evaluation system construction and customer service risk evaluation system construction. The invention relates to the technical field of power demand customer service risk prediction, in particular to a customer service risk evaluation system modeling method and system based on artificial intelligence, and the method comprises the steps: carrying out the multi-target data generation through employing a variational automatic encoder, and optimizing the data quality; multiple artificial intelligence models are constructed for prediction, so that prediction errors are reduced; according to the method, prediction results of the three models are superposed, fle</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrsKwkAQRuE0FqK-w_gAgjEIWkpQrKzsw7j7JxncS9jZBHx7LbS3OsX55oWpR83RI5EiTWJASfRJmNiNnCUG0pdmePLRwknoyCP30RIH-1sPVlj6UE5ZWjHCjiRkOCcdgsGymLXsFKtvF8X6cr7X1w2G2EAHNgjITX0ry0N53Ffb3an6x7wBCak_Lg</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>YU HONGFU</creator><creator>YANG XIAOYAN</creator><creator>SU HONGYU</creator><creator>MO LIANGYUAN</creator><creator>ZHU DI</creator><creator>WANG LICHAO</creator><creator>HUANG KAI</creator><creator>WEI LIUMU</creator><creator>WU CHANGSHAN</creator><creator>LI LIN</creator><creator>FU HUA</creator><creator>ZHU NING</creator><creator>LIU NA</creator><creator>LIAO QIUYUAN</creator><creator>HUANG YUSHAN</creator><scope>EVB</scope></search><sort><creationdate>20240614</creationdate><title>Customer service risk evaluation system modeling method and system based on artificial intelligence</title><author>YU HONGFU ; YANG XIAOYAN ; SU HONGYU ; MO LIANGYUAN ; ZHU DI ; WANG LICHAO ; HUANG KAI ; WEI LIUMU ; WU CHANGSHAN ; LI LIN ; FU HUA ; ZHU NING ; LIU NA ; LIAO QIUYUAN ; HUANG YUSHAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118195302A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YU HONGFU</creatorcontrib><creatorcontrib>YANG XIAOYAN</creatorcontrib><creatorcontrib>SU HONGYU</creatorcontrib><creatorcontrib>MO LIANGYUAN</creatorcontrib><creatorcontrib>ZHU DI</creatorcontrib><creatorcontrib>WANG LICHAO</creatorcontrib><creatorcontrib>HUANG KAI</creatorcontrib><creatorcontrib>WEI LIUMU</creatorcontrib><creatorcontrib>WU CHANGSHAN</creatorcontrib><creatorcontrib>LI LIN</creatorcontrib><creatorcontrib>FU HUA</creatorcontrib><creatorcontrib>ZHU NING</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>LIAO QIUYUAN</creatorcontrib><creatorcontrib>HUANG YUSHAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU HONGFU</au><au>YANG XIAOYAN</au><au>SU HONGYU</au><au>MO LIANGYUAN</au><au>ZHU DI</au><au>WANG LICHAO</au><au>HUANG KAI</au><au>WEI LIUMU</au><au>WU CHANGSHAN</au><au>LI LIN</au><au>FU HUA</au><au>ZHU NING</au><au>LIU NA</au><au>LIAO QIUYUAN</au><au>HUANG YUSHAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Customer service risk evaluation system modeling method and system based on artificial intelligence</title><date>2024-06-14</date><risdate>2024</risdate><abstract>The invention discloses a customer service risk evaluation system modeling method and system based on artificial intelligence. The method comprises the steps of data collection, data preprocessing, appeal risk evaluation system construction, power failure risk evaluation system construction, load risk evaluation system construction, value added service risk evaluation system construction and customer service risk evaluation system construction. The invention relates to the technical field of power demand customer service risk prediction, in particular to a customer service risk evaluation system modeling method and system based on artificial intelligence, and the method comprises the steps: carrying out the multi-target data generation through employing a variational automatic encoder, and optimizing the data quality; multiple artificial intelligence models are constructed for prediction, so that prediction errors are reduced; according to the method, prediction results of the three models are superposed, fle</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118195302A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Customer service risk evaluation system modeling method and system based on artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20HONGFU&rft.date=2024-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118195302A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true