Multi-modal feature fusion Android malicious software detection method based on attention mechanism

The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG WEI, GAO WEIKANG, YAO HAITAO, SUNG YONG-KI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG WEI
GAO WEIKANG
YAO HAITAO
SUNG YONG-KI
description The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118194288A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118194288A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118194288A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMheEuDAi4g3uADgGGMlYViAUm9sokjhopiavaEdenSD0A09Ov920r-yhRQ5PYYQRPqGUm8EUCZ-iymzk4SBiDDVwEhL1-cBGOlKz-UCId2cEbhRwsjaqU18eOmIOkfbXxGIUO6-6q-nZ99feGJh5IJrSUSYf-aUxrLudj23anf8wX5hU_HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><source>esp@cenet</source><creator>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</creator><creatorcontrib>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</creatorcontrib><description>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194288A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194288A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>GAO WEIKANG</creatorcontrib><creatorcontrib>YAO HAITAO</creatorcontrib><creatorcontrib>SUNG YONG-KI</creatorcontrib><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><description>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMheEuDAi4g3uADgGGMlYViAUm9sokjhopiavaEdenSD0A09Ov920r-yhRQ5PYYQRPqGUm8EUCZ-iymzk4SBiDDVwEhL1-cBGOlKz-UCId2cEbhRwsjaqU18eOmIOkfbXxGIUO6-6q-nZ99feGJh5IJrSUSYf-aUxrLudj23anf8wX5hU_HA</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>WANG WEI</creator><creator>GAO WEIKANG</creator><creator>YAO HAITAO</creator><creator>SUNG YONG-KI</creator><scope>EVB</scope></search><sort><creationdate>20240614</creationdate><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><author>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118194288A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>GAO WEIKANG</creatorcontrib><creatorcontrib>YAO HAITAO</creatorcontrib><creatorcontrib>SUNG YONG-KI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEI</au><au>GAO WEIKANG</au><au>YAO HAITAO</au><au>SUNG YONG-KI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><date>2024-06-14</date><risdate>2024</risdate><abstract>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118194288A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-modal feature fusion Android malicious software detection method based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEI&rft.date=2024-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118194288A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true