Multi-modal feature fusion Android malicious software detection method based on attention mechanism
The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writin...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG WEI GAO WEIKANG YAO HAITAO SUNG YONG-KI |
description | The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118194288A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118194288A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118194288A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMheEuDAi4g3uADgGGMlYViAUm9sokjhopiavaEdenSD0A09Ov920r-yhRQ5PYYQRPqGUm8EUCZ-iymzk4SBiDDVwEhL1-cBGOlKz-UCId2cEbhRwsjaqU18eOmIOkfbXxGIUO6-6q-nZ99feGJh5IJrSUSYf-aUxrLudj23anf8wX5hU_HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><source>esp@cenet</source><creator>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</creator><creatorcontrib>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</creatorcontrib><description>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240614&DB=EPODOC&CC=CN&NR=118194288A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240614&DB=EPODOC&CC=CN&NR=118194288A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>GAO WEIKANG</creatorcontrib><creatorcontrib>YAO HAITAO</creatorcontrib><creatorcontrib>SUNG YONG-KI</creatorcontrib><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><description>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMheEuDAi4g3uADgGGMlYViAUm9sokjhopiavaEdenSD0A09Ov920r-yhRQ5PYYQRPqGUm8EUCZ-iymzk4SBiDDVwEhL1-cBGOlKz-UCId2cEbhRwsjaqU18eOmIOkfbXxGIUO6-6q-nZ99feGJh5IJrSUSYf-aUxrLudj23anf8wX5hU_HA</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>WANG WEI</creator><creator>GAO WEIKANG</creator><creator>YAO HAITAO</creator><creator>SUNG YONG-KI</creator><scope>EVB</scope></search><sort><creationdate>20240614</creationdate><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><author>WANG WEI ; GAO WEIKANG ; YAO HAITAO ; SUNG YONG-KI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118194288A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>GAO WEIKANG</creatorcontrib><creatorcontrib>YAO HAITAO</creatorcontrib><creatorcontrib>SUNG YONG-KI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEI</au><au>GAO WEIKANG</au><au>YAO HAITAO</au><au>SUNG YONG-KI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal feature fusion Android malicious software detection method based on attention mechanism</title><date>2024-06-14</date><risdate>2024</risdate><abstract>The invention relates to the technical field of malicious software detection, and discloses an attention mechanism-based multi-modal feature fusion Android malicious software detection method, which comprises the following steps of: extracting target contents in a dex file of target software, writing the target contents into a new file, converting the new file into an RGB (Red, Green and Blue) image, and inputting the RGB image into a deep convolutional neural network to obtain a picture feature vector; extracting permission information in a list file of the target software, and processing the permission information by utilizing a natural language processing model to obtain a text feature vector; and performing feature fusion on the picture feature vector and the text feature vector by adopting a multi-head attention mechanism to obtain a feature fusion vector, and inputting the feature fusion vector into a full connection layer to classify target software. According to the method, information from the visual</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118194288A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-modal feature fusion Android malicious software detection method based on attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEI&rft.date=2024-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118194288A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |