Advertisement overflow detection method based on multi-dimensional Gaussian mixture model

The invention relates to the technical field of advertisement note data detection, and particularly discloses an advertisement overflow detection method based on a multi-dimensional Gaussian mixture model, which comprises the following steps of: firstly, establishing the multi-dimensional Gaussian m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG XIN, YANG FAN, MA XINGKE, WANG ZUO, XIAO YUYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG XIN
YANG FAN
MA XINGKE
WANG ZUO
XIAO YUYU
description The invention relates to the technical field of advertisement note data detection, and particularly discloses an advertisement overflow detection method based on a multi-dimensional Gaussian mixture model, which comprises the following steps of: firstly, establishing the multi-dimensional Gaussian mixture model, listing a probability density function model of the multi-dimensional Gaussian mixture model of a sample note, and establishing a likelihood function to estimate model parameters; secondly, logarithmizing a likelihood function, introducing a hidden variable representing a Gaussian sub-model to which a sample note belongs, and calculating a posterior probability in combination with a Bayesian formula; judging whether the multi-dimensional Gaussian mixture model completes convergence under the current model parameter condition or not, and if not, continuing to update the model parameters through the posterior probability until convergence; and finally, clustering of all the notes is completed by the con
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118194067A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118194067A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118194067A3</originalsourceid><addsrcrecordid>eNqNij0KwkAUBtNYiHqH5wECLorGMgR_Kisbq7Bmv-DC_oS8t-rxXcEDWA3DzLS41eaJUSzDIwjFLL2LLzIQdGJjIA95REN3zTD09eTElsbmn3PXjk46MVudk31LGkE-Grh5Mem1Yyx-nBXL4-HanEsMsQUPukOAtM1FqUrtN6vtrl7_83wAZKs7mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Advertisement overflow detection method based on multi-dimensional Gaussian mixture model</title><source>esp@cenet</source><creator>HUANG XIN ; YANG FAN ; MA XINGKE ; WANG ZUO ; XIAO YUYU</creator><creatorcontrib>HUANG XIN ; YANG FAN ; MA XINGKE ; WANG ZUO ; XIAO YUYU</creatorcontrib><description>The invention relates to the technical field of advertisement note data detection, and particularly discloses an advertisement overflow detection method based on a multi-dimensional Gaussian mixture model, which comprises the following steps of: firstly, establishing the multi-dimensional Gaussian mixture model, listing a probability density function model of the multi-dimensional Gaussian mixture model of a sample note, and establishing a likelihood function to estimate model parameters; secondly, logarithmizing a likelihood function, introducing a hidden variable representing a Gaussian sub-model to which a sample note belongs, and calculating a posterior probability in combination with a Bayesian formula; judging whether the multi-dimensional Gaussian mixture model completes convergence under the current model parameter condition or not, and if not, continuing to update the model parameters through the posterior probability until convergence; and finally, clustering of all the notes is completed by the con</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194067A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194067A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>MA XINGKE</creatorcontrib><creatorcontrib>WANG ZUO</creatorcontrib><creatorcontrib>XIAO YUYU</creatorcontrib><title>Advertisement overflow detection method based on multi-dimensional Gaussian mixture model</title><description>The invention relates to the technical field of advertisement note data detection, and particularly discloses an advertisement overflow detection method based on a multi-dimensional Gaussian mixture model, which comprises the following steps of: firstly, establishing the multi-dimensional Gaussian mixture model, listing a probability density function model of the multi-dimensional Gaussian mixture model of a sample note, and establishing a likelihood function to estimate model parameters; secondly, logarithmizing a likelihood function, introducing a hidden variable representing a Gaussian sub-model to which a sample note belongs, and calculating a posterior probability in combination with a Bayesian formula; judging whether the multi-dimensional Gaussian mixture model completes convergence under the current model parameter condition or not, and if not, continuing to update the model parameters through the posterior probability until convergence; and finally, clustering of all the notes is completed by the con</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNij0KwkAUBtNYiHqH5wECLorGMgR_Kisbq7Bmv-DC_oS8t-rxXcEDWA3DzLS41eaJUSzDIwjFLL2LLzIQdGJjIA95REN3zTD09eTElsbmn3PXjk46MVudk31LGkE-Grh5Mem1Yyx-nBXL4-HanEsMsQUPukOAtM1FqUrtN6vtrl7_83wAZKs7mg</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>HUANG XIN</creator><creator>YANG FAN</creator><creator>MA XINGKE</creator><creator>WANG ZUO</creator><creator>XIAO YUYU</creator><scope>EVB</scope></search><sort><creationdate>20240614</creationdate><title>Advertisement overflow detection method based on multi-dimensional Gaussian mixture model</title><author>HUANG XIN ; YANG FAN ; MA XINGKE ; WANG ZUO ; XIAO YUYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118194067A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>MA XINGKE</creatorcontrib><creatorcontrib>WANG ZUO</creatorcontrib><creatorcontrib>XIAO YUYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG XIN</au><au>YANG FAN</au><au>MA XINGKE</au><au>WANG ZUO</au><au>XIAO YUYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Advertisement overflow detection method based on multi-dimensional Gaussian mixture model</title><date>2024-06-14</date><risdate>2024</risdate><abstract>The invention relates to the technical field of advertisement note data detection, and particularly discloses an advertisement overflow detection method based on a multi-dimensional Gaussian mixture model, which comprises the following steps of: firstly, establishing the multi-dimensional Gaussian mixture model, listing a probability density function model of the multi-dimensional Gaussian mixture model of a sample note, and establishing a likelihood function to estimate model parameters; secondly, logarithmizing a likelihood function, introducing a hidden variable representing a Gaussian sub-model to which a sample note belongs, and calculating a posterior probability in combination with a Bayesian formula; judging whether the multi-dimensional Gaussian mixture model completes convergence under the current model parameter condition or not, and if not, continuing to update the model parameters through the posterior probability until convergence; and finally, clustering of all the notes is completed by the con</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118194067A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Advertisement overflow detection method based on multi-dimensional Gaussian mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20XIN&rft.date=2024-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118194067A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true