Transformer fault diagnosis method based on acoustic signal and recurrent neural network

The invention relates to a transformer fault diagnosis method based on an acoustic signal and a recurrent neural network, and provides a detection method for performing fault diagnosis on a transformer by using the acoustic signal. According to the method, after two sound signal features are extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG LONG, WANG CHAOBING, YANG MINGJIE, ZHOU SHENCI, YANG HEMAO, LIU GUORONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG LONG
WANG CHAOBING
YANG MINGJIE
ZHOU SHENCI
YANG HEMAO
LIU GUORONG
description The invention relates to a transformer fault diagnosis method based on an acoustic signal and a recurrent neural network, and provides a detection method for performing fault diagnosis on a transformer by using the acoustic signal. According to the method, after two sound signal features are extracted, the two features are input into the recurrent neural network in a time sequence mode for training, and a better recognition and diagnosis effect is achieved. The method comprises the following steps: acquiring a transformer sound signal; classifying the samples; preprocessing the sample sound signals; extracting sound signal features; sorting two features of the sound signals; constructing a fault model; training a fault model; importing a transformer sample into the model; and obtaining a result. The fault identification accuracy is higher, and effective support is provided for operation fault identification of the transformer. The invention relates to a transformer fault diagnosis method based on acoustic sig
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118194009A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118194009A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118194009A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQQNE0FqLeYTyAkKCFKSUoVlYp7MK4O0kWNzNhZhevbwoPYPXh89bFs1Vk60UnUugxxwQ-4MBiwWCiNIqHFxp5EAZ0ki0FBxYGxgjIHpRcViVOwJR1mUzpI_reFqseo9Hu102xv13b5n6gWTqyGR0tsmseVXWu6lNZ1pfjP-YL7tE65Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transformer fault diagnosis method based on acoustic signal and recurrent neural network</title><source>esp@cenet</source><creator>ZHANG LONG ; WANG CHAOBING ; YANG MINGJIE ; ZHOU SHENCI ; YANG HEMAO ; LIU GUORONG</creator><creatorcontrib>ZHANG LONG ; WANG CHAOBING ; YANG MINGJIE ; ZHOU SHENCI ; YANG HEMAO ; LIU GUORONG</creatorcontrib><description>The invention relates to a transformer fault diagnosis method based on an acoustic signal and a recurrent neural network, and provides a detection method for performing fault diagnosis on a transformer by using the acoustic signal. According to the method, after two sound signal features are extracted, the two features are input into the recurrent neural network in a time sequence mode for training, and a better recognition and diagnosis effect is achieved. The method comprises the following steps: acquiring a transformer sound signal; classifying the samples; preprocessing the sample sound signals; extracting sound signal features; sorting two features of the sound signals; constructing a fault model; training a fault model; importing a transformer sample into the model; and obtaining a result. The fault identification accuracy is higher, and effective support is provided for operation fault identification of the transformer. The invention relates to a transformer fault diagnosis method based on acoustic sig</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194009A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240614&amp;DB=EPODOC&amp;CC=CN&amp;NR=118194009A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG LONG</creatorcontrib><creatorcontrib>WANG CHAOBING</creatorcontrib><creatorcontrib>YANG MINGJIE</creatorcontrib><creatorcontrib>ZHOU SHENCI</creatorcontrib><creatorcontrib>YANG HEMAO</creatorcontrib><creatorcontrib>LIU GUORONG</creatorcontrib><title>Transformer fault diagnosis method based on acoustic signal and recurrent neural network</title><description>The invention relates to a transformer fault diagnosis method based on an acoustic signal and a recurrent neural network, and provides a detection method for performing fault diagnosis on a transformer by using the acoustic signal. According to the method, after two sound signal features are extracted, the two features are input into the recurrent neural network in a time sequence mode for training, and a better recognition and diagnosis effect is achieved. The method comprises the following steps: acquiring a transformer sound signal; classifying the samples; preprocessing the sample sound signals; extracting sound signal features; sorting two features of the sound signals; constructing a fault model; training a fault model; importing a transformer sample into the model; and obtaining a result. The fault identification accuracy is higher, and effective support is provided for operation fault identification of the transformer. The invention relates to a transformer fault diagnosis method based on acoustic sig</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQQNE0FqLeYTyAkKCFKSUoVlYp7MK4O0kWNzNhZhevbwoPYPXh89bFs1Vk60UnUugxxwQ-4MBiwWCiNIqHFxp5EAZ0ki0FBxYGxgjIHpRcViVOwJR1mUzpI_reFqseo9Hu102xv13b5n6gWTqyGR0tsmseVXWu6lNZ1pfjP-YL7tE65Q</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>ZHANG LONG</creator><creator>WANG CHAOBING</creator><creator>YANG MINGJIE</creator><creator>ZHOU SHENCI</creator><creator>YANG HEMAO</creator><creator>LIU GUORONG</creator><scope>EVB</scope></search><sort><creationdate>20240614</creationdate><title>Transformer fault diagnosis method based on acoustic signal and recurrent neural network</title><author>ZHANG LONG ; WANG CHAOBING ; YANG MINGJIE ; ZHOU SHENCI ; YANG HEMAO ; LIU GUORONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118194009A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG LONG</creatorcontrib><creatorcontrib>WANG CHAOBING</creatorcontrib><creatorcontrib>YANG MINGJIE</creatorcontrib><creatorcontrib>ZHOU SHENCI</creatorcontrib><creatorcontrib>YANG HEMAO</creatorcontrib><creatorcontrib>LIU GUORONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG LONG</au><au>WANG CHAOBING</au><au>YANG MINGJIE</au><au>ZHOU SHENCI</au><au>YANG HEMAO</au><au>LIU GUORONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transformer fault diagnosis method based on acoustic signal and recurrent neural network</title><date>2024-06-14</date><risdate>2024</risdate><abstract>The invention relates to a transformer fault diagnosis method based on an acoustic signal and a recurrent neural network, and provides a detection method for performing fault diagnosis on a transformer by using the acoustic signal. According to the method, after two sound signal features are extracted, the two features are input into the recurrent neural network in a time sequence mode for training, and a better recognition and diagnosis effect is achieved. The method comprises the following steps: acquiring a transformer sound signal; classifying the samples; preprocessing the sample sound signals; extracting sound signal features; sorting two features of the sound signals; constructing a fault model; training a fault model; importing a transformer sample into the model; and obtaining a result. The fault identification accuracy is higher, and effective support is provided for operation fault identification of the transformer. The invention relates to a transformer fault diagnosis method based on acoustic sig</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118194009A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Transformer fault diagnosis method based on acoustic signal and recurrent neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20LONG&rft.date=2024-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118194009A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true