DoH detection method based on self-attention BiLSTM
The invention discloses a DoH detection method based on self-attention BiLSTM, and relates to the technical field of network information security, and the method comprises the steps: obtaining first traffic data; carrying out undersampling and oversampling processing on the first traffic data to obt...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | JIANG KUI DENG ZHAORUI WU BO ZHU SILIN HUANG RUIBIN |
description | The invention discloses a DoH detection method based on self-attention BiLSTM, and relates to the technical field of network information security, and the method comprises the steps: obtaining first traffic data; carrying out undersampling and oversampling processing on the first traffic data to obtain second traffic data; and inputting the second traffic data into a self-attention BiLSTM deep learning model, extracting global features of the DoH traffic data and retaining time sequence features. According to the invention, under-sampling and over-sampling are adopted to process flow data, so that data balance is realized; in order to accurately carry out multi-classification of DoH traffic, the self-attention BiLSTM deep learning model is constructed, and the problems that DoH traffic detection is difficult and the accuracy rate is low are solved.
本发明公开了一种基于自注意力BiLSTM的DoH检测方法,涉及网络信息安全技术领域,包括:获取第一流量数据;对所述第一流量数据进行欠采样和过采样处理,得到第二流量数据;将所述第二流量数据输入自注意力BiLSTM深度学习模型,提取所述DoH流量数据的全局特征并保留时序特征。本发明采用欠采样和过采样对流量数据进行处理,实现了数据 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118174956A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118174956A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118174956A3</originalsourceid><addsrcrecordid>eNrjZDB2yfdQSEktSU0uyczPU8hNLcnIT1FISixOTVEA8otTc9J0E0tKUvPA0k6ZPsEhvjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwtDcxNLUzNGYGDUAntsrnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DoH detection method based on self-attention BiLSTM</title><source>esp@cenet</source><creator>JIANG KUI ; DENG ZHAORUI ; WU BO ; ZHU SILIN ; HUANG RUIBIN</creator><creatorcontrib>JIANG KUI ; DENG ZHAORUI ; WU BO ; ZHU SILIN ; HUANG RUIBIN</creatorcontrib><description>The invention discloses a DoH detection method based on self-attention BiLSTM, and relates to the technical field of network information security, and the method comprises the steps: obtaining first traffic data; carrying out undersampling and oversampling processing on the first traffic data to obtain second traffic data; and inputting the second traffic data into a self-attention BiLSTM deep learning model, extracting global features of the DoH traffic data and retaining time sequence features. According to the invention, under-sampling and over-sampling are adopted to process flow data, so that data balance is realized; in order to accurately carry out multi-classification of DoH traffic, the self-attention BiLSTM deep learning model is constructed, and the problems that DoH traffic detection is difficult and the accuracy rate is low are solved.
本发明公开了一种基于自注意力BiLSTM的DoH检测方法,涉及网络信息安全技术领域,包括:获取第一流量数据;对所述第一流量数据进行欠采样和过采样处理,得到第二流量数据;将所述第二流量数据输入自注意力BiLSTM深度学习模型,提取所述DoH流量数据的全局特征并保留时序特征。本发明采用欠采样和过采样对流量数据进行处理,实现了数据</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=CN&NR=118174956A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=CN&NR=118174956A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIANG KUI</creatorcontrib><creatorcontrib>DENG ZHAORUI</creatorcontrib><creatorcontrib>WU BO</creatorcontrib><creatorcontrib>ZHU SILIN</creatorcontrib><creatorcontrib>HUANG RUIBIN</creatorcontrib><title>DoH detection method based on self-attention BiLSTM</title><description>The invention discloses a DoH detection method based on self-attention BiLSTM, and relates to the technical field of network information security, and the method comprises the steps: obtaining first traffic data; carrying out undersampling and oversampling processing on the first traffic data to obtain second traffic data; and inputting the second traffic data into a self-attention BiLSTM deep learning model, extracting global features of the DoH traffic data and retaining time sequence features. According to the invention, under-sampling and over-sampling are adopted to process flow data, so that data balance is realized; in order to accurately carry out multi-classification of DoH traffic, the self-attention BiLSTM deep learning model is constructed, and the problems that DoH traffic detection is difficult and the accuracy rate is low are solved.
本发明公开了一种基于自注意力BiLSTM的DoH检测方法,涉及网络信息安全技术领域,包括:获取第一流量数据;对所述第一流量数据进行欠采样和过采样处理,得到第二流量数据;将所述第二流量数据输入自注意力BiLSTM深度学习模型,提取所述DoH流量数据的全局特征并保留时序特征。本发明采用欠采样和过采样对流量数据进行处理,实现了数据</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB2yfdQSEktSU0uyczPU8hNLcnIT1FISixOTVEA8otTc9J0E0tKUvPA0k6ZPsEhvjwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwtDcxNLUzNGYGDUAntsrnQ</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>JIANG KUI</creator><creator>DENG ZHAORUI</creator><creator>WU BO</creator><creator>ZHU SILIN</creator><creator>HUANG RUIBIN</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>DoH detection method based on self-attention BiLSTM</title><author>JIANG KUI ; DENG ZHAORUI ; WU BO ; ZHU SILIN ; HUANG RUIBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118174956A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>JIANG KUI</creatorcontrib><creatorcontrib>DENG ZHAORUI</creatorcontrib><creatorcontrib>WU BO</creatorcontrib><creatorcontrib>ZHU SILIN</creatorcontrib><creatorcontrib>HUANG RUIBIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIANG KUI</au><au>DENG ZHAORUI</au><au>WU BO</au><au>ZHU SILIN</au><au>HUANG RUIBIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DoH detection method based on self-attention BiLSTM</title><date>2024-06-11</date><risdate>2024</risdate><abstract>The invention discloses a DoH detection method based on self-attention BiLSTM, and relates to the technical field of network information security, and the method comprises the steps: obtaining first traffic data; carrying out undersampling and oversampling processing on the first traffic data to obtain second traffic data; and inputting the second traffic data into a self-attention BiLSTM deep learning model, extracting global features of the DoH traffic data and retaining time sequence features. According to the invention, under-sampling and over-sampling are adopted to process flow data, so that data balance is realized; in order to accurately carry out multi-classification of DoH traffic, the self-attention BiLSTM deep learning model is constructed, and the problems that DoH traffic detection is difficult and the accuracy rate is low are solved.
本发明公开了一种基于自注意力BiLSTM的DoH检测方法,涉及网络信息安全技术领域,包括:获取第一流量数据;对所述第一流量数据进行欠采样和过采样处理,得到第二流量数据;将所述第二流量数据输入自注意力BiLSTM深度学习模型,提取所述DoH流量数据的全局特征并保留时序特征。本发明采用欠采样和过采样对流量数据进行处理,实现了数据</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118174956A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | DoH detection method based on self-attention BiLSTM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIANG%20KUI&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118174956A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |