Prostate accidental cancer prediction method and system based on multi-task learning
The invention discloses a prostate accidental cancer prediction method and system based on multi-task learning, and relates to the technical field of image processing, and the method comprises the following steps: S1, preprocessing mpMRI images of a prostate accidental cancer patient and a benign pr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a prostate accidental cancer prediction method and system based on multi-task learning, and relates to the technical field of image processing, and the method comprises the following steps: S1, preprocessing mpMRI images of a prostate accidental cancer patient and a benign prostatic hyperplasia patient, and obtaining overlapped patch blocks through fine-grained segmentation; s2, inputting the patch blocks overlapped in the step S1 into a hierarchical Transform encoder to obtain multi-level feature maps with different resolutions; and S3, performing up-sampling on the multi-level semantic feature map obtained in the S2 to obtain features of the same dimension, and then performing splicing to form a new feature map. The method is convenient to realize prediction of the prostate accidental cancer.
本发明公开基于多任务学习的前列腺偶发癌预测方法及系统,涉及图像处理技术领域,包括以下步骤:S1:对前列腺偶发癌患者和良性前列腺增生患者的mpMRI图像进行预处理,通过细粒度的分割得到重叠的补丁块;S2:将所述S1中重叠的补丁块输入到层级Transformer编码器中来获取不同分辨率的多层次特征图;S3:将所述S2中得到的多层次语义特征图,进行上采样得到相同维度特征,然后进行拼接,形成新 |
---|