Neural network model quantification method

The embodiment of the invention provides a neural network model quantification method, and the method comprises the steps: obtaining a quantification data set, and determining the initial parameter sensitivity feature information of each neural network layer according to the quantification data set;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIA JINPENG, ZHANG YUEWEI, OU LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIA JINPENG
ZHANG YUEWEI
OU LIN
description The embodiment of the invention provides a neural network model quantification method, and the method comprises the steps: obtaining a quantification data set, and determining the initial parameter sensitivity feature information of each neural network layer according to the quantification data set; generating reference parameter information according to the initial parameter sensitivity feature information corresponding to each neural network layer; quantizing each reference parameter information based on at least one quantization strategy, and generating at least one neural network layer quantization result corresponding to each neural network layer; and determining a neural network model quantization result corresponding to the neural network model according to a target storage threshold value of a target storage device, the initial volume of the neural network model and each neural network layer quantization result corresponding to each neural network layer. The parameter information is generated accordin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118171698A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118171698A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118171698A3</originalsourceid><addsrcrecordid>eNrjZNDySy0tSsxRyEstKc8vylbIzU9JzVEoLE3MK8lMy0xOLMnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyalAU-Kd_QwNLQzNDc0sLRyNiVEDAF7eKYc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network model quantification method</title><source>esp@cenet</source><creator>XIA JINPENG ; ZHANG YUEWEI ; OU LIN</creator><creatorcontrib>XIA JINPENG ; ZHANG YUEWEI ; OU LIN</creatorcontrib><description>The embodiment of the invention provides a neural network model quantification method, and the method comprises the steps: obtaining a quantification data set, and determining the initial parameter sensitivity feature information of each neural network layer according to the quantification data set; generating reference parameter information according to the initial parameter sensitivity feature information corresponding to each neural network layer; quantizing each reference parameter information based on at least one quantization strategy, and generating at least one neural network layer quantization result corresponding to each neural network layer; and determining a neural network model quantization result corresponding to the neural network model according to a target storage threshold value of a target storage device, the initial volume of the neural network model and each neural network layer quantization result corresponding to each neural network layer. The parameter information is generated accordin</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171698A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171698A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIA JINPENG</creatorcontrib><creatorcontrib>ZHANG YUEWEI</creatorcontrib><creatorcontrib>OU LIN</creatorcontrib><title>Neural network model quantification method</title><description>The embodiment of the invention provides a neural network model quantification method, and the method comprises the steps: obtaining a quantification data set, and determining the initial parameter sensitivity feature information of each neural network layer according to the quantification data set; generating reference parameter information according to the initial parameter sensitivity feature information corresponding to each neural network layer; quantizing each reference parameter information based on at least one quantization strategy, and generating at least one neural network layer quantization result corresponding to each neural network layer; and determining a neural network model quantization result corresponding to the neural network model according to a target storage threshold value of a target storage device, the initial volume of the neural network model and each neural network layer quantization result corresponding to each neural network layer. The parameter information is generated accordin</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDySy0tSsxRyEstKc8vylbIzU9JzVEoLE3MK8lMy0xOLMnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyalAU-Kd_QwNLQzNDc0sLRyNiVEDAF7eKYc</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>XIA JINPENG</creator><creator>ZHANG YUEWEI</creator><creator>OU LIN</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>Neural network model quantification method</title><author>XIA JINPENG ; ZHANG YUEWEI ; OU LIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118171698A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIA JINPENG</creatorcontrib><creatorcontrib>ZHANG YUEWEI</creatorcontrib><creatorcontrib>OU LIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIA JINPENG</au><au>ZHANG YUEWEI</au><au>OU LIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network model quantification method</title><date>2024-06-11</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a neural network model quantification method, and the method comprises the steps: obtaining a quantification data set, and determining the initial parameter sensitivity feature information of each neural network layer according to the quantification data set; generating reference parameter information according to the initial parameter sensitivity feature information corresponding to each neural network layer; quantizing each reference parameter information based on at least one quantization strategy, and generating at least one neural network layer quantization result corresponding to each neural network layer; and determining a neural network model quantization result corresponding to the neural network model according to a target storage threshold value of a target storage device, the initial volume of the neural network model and each neural network layer quantization result corresponding to each neural network layer. The parameter information is generated accordin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118171698A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Neural network model quantification method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIA%20JINPENG&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118171698A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true