Remaining service life prediction method meeting cross-working-condition scene application

The invention discloses a remaining service life prediction method meeting cross-working-condition scene application. The remaining service life prediction method comprises the following steps: 1) giving degradation data of an active domain and a target domain; 2) carrying out data normalization on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIAO XU, LYU YI, WEN ZHENFEI, SHEN ZAICHEN, ZHOU NINGXU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIAO XU
LYU YI
WEN ZHENFEI
SHEN ZAICHEN
ZHOU NINGXU
description The invention discloses a remaining service life prediction method meeting cross-working-condition scene application. The remaining service life prediction method comprises the following steps: 1) giving degradation data of an active domain and a target domain; 2) carrying out data normalization on the collected data; 3), extracting degradation features of the source domain and the target domain, and separating the degradation features into private features and common features; 4) aligning common features of the source domain and the target domain from two angles of global distribution and local distribution; 5) maximizing mutual information of the input data and the extracted features by adopting an InfoNCE loss function in contrast learning, and ensuring that the extracted features have representativeness; and 6) regression prediction: performing RUL prediction on the test data by using the model trained in the steps, thereby greatly improving the prediction precision. 本发明公开了一种满足跨工况场景应用的剩余使用寿命预测方法,包括以下步骤:1)
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118171240A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118171240A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118171240A3</originalsourceid><addsrcrecordid>eNqNizEKAjEQRdNYiHqHeICAUUFbWRQrC7GyWcJkdh3MZkIm6PXdiAewerzP-1N1v-LgKFLstWB-EaAO1KFOGT1BIY56wPJgPwJLzSCziHlzfo5mgKOnbyaAEbVLKRC4uszVpHNBcPHjTC1Px1tzNpi4RUmuHkrbXKzd251db1eHzT_NB5YKO-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Remaining service life prediction method meeting cross-working-condition scene application</title><source>esp@cenet</source><creator>XIAO XU ; LYU YI ; WEN ZHENFEI ; SHEN ZAICHEN ; ZHOU NINGXU</creator><creatorcontrib>XIAO XU ; LYU YI ; WEN ZHENFEI ; SHEN ZAICHEN ; ZHOU NINGXU</creatorcontrib><description>The invention discloses a remaining service life prediction method meeting cross-working-condition scene application. The remaining service life prediction method comprises the following steps: 1) giving degradation data of an active domain and a target domain; 2) carrying out data normalization on the collected data; 3), extracting degradation features of the source domain and the target domain, and separating the degradation features into private features and common features; 4) aligning common features of the source domain and the target domain from two angles of global distribution and local distribution; 5) maximizing mutual information of the input data and the extracted features by adopting an InfoNCE loss function in contrast learning, and ensuring that the extracted features have representativeness; and 6) regression prediction: performing RUL prediction on the test data by using the model trained in the steps, thereby greatly improving the prediction precision. 本发明公开了一种满足跨工况场景应用的剩余使用寿命预测方法,包括以下步骤:1)</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171240A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171240A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>SHEN ZAICHEN</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><title>Remaining service life prediction method meeting cross-working-condition scene application</title><description>The invention discloses a remaining service life prediction method meeting cross-working-condition scene application. The remaining service life prediction method comprises the following steps: 1) giving degradation data of an active domain and a target domain; 2) carrying out data normalization on the collected data; 3), extracting degradation features of the source domain and the target domain, and separating the degradation features into private features and common features; 4) aligning common features of the source domain and the target domain from two angles of global distribution and local distribution; 5) maximizing mutual information of the input data and the extracted features by adopting an InfoNCE loss function in contrast learning, and ensuring that the extracted features have representativeness; and 6) regression prediction: performing RUL prediction on the test data by using the model trained in the steps, thereby greatly improving the prediction precision. 本发明公开了一种满足跨工况场景应用的剩余使用寿命预测方法,包括以下步骤:1)</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKAjEQRdNYiHqHeICAUUFbWRQrC7GyWcJkdh3MZkIm6PXdiAewerzP-1N1v-LgKFLstWB-EaAO1KFOGT1BIY56wPJgPwJLzSCziHlzfo5mgKOnbyaAEbVLKRC4uszVpHNBcPHjTC1Px1tzNpi4RUmuHkrbXKzd251db1eHzT_NB5YKO-c</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>XIAO XU</creator><creator>LYU YI</creator><creator>WEN ZHENFEI</creator><creator>SHEN ZAICHEN</creator><creator>ZHOU NINGXU</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>Remaining service life prediction method meeting cross-working-condition scene application</title><author>XIAO XU ; LYU YI ; WEN ZHENFEI ; SHEN ZAICHEN ; ZHOU NINGXU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118171240A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>SHEN ZAICHEN</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO XU</au><au>LYU YI</au><au>WEN ZHENFEI</au><au>SHEN ZAICHEN</au><au>ZHOU NINGXU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Remaining service life prediction method meeting cross-working-condition scene application</title><date>2024-06-11</date><risdate>2024</risdate><abstract>The invention discloses a remaining service life prediction method meeting cross-working-condition scene application. The remaining service life prediction method comprises the following steps: 1) giving degradation data of an active domain and a target domain; 2) carrying out data normalization on the collected data; 3), extracting degradation features of the source domain and the target domain, and separating the degradation features into private features and common features; 4) aligning common features of the source domain and the target domain from two angles of global distribution and local distribution; 5) maximizing mutual information of the input data and the extracted features by adopting an InfoNCE loss function in contrast learning, and ensuring that the extracted features have representativeness; and 6) regression prediction: performing RUL prediction on the test data by using the model trained in the steps, thereby greatly improving the prediction precision. 本发明公开了一种满足跨工况场景应用的剩余使用寿命预测方法,包括以下步骤:1)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118171240A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Remaining service life prediction method meeting cross-working-condition scene application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20XU&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118171240A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true