Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism
The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG JIANXIONG CHI QINGGUANG LIANG TIANTIAN |
description | The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118171065A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118171065A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118171065A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzlAJCIEdIUKxEC70ImlMo1LIyVxVbv3ByEOwPL_8ubZo2TlEcZvO5yCgvP4SixeIJL27OCJQg44QVFV5uRv97o0I4l3EwaI7KZABlUpqf-gSG2PyUtcZrMOg9Dq90W2vpzr4mpo4IZkwJYSaVNU1ub2YDf73XH7j3kD5hM6mQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><source>esp@cenet</source><creator>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</creator><creatorcontrib>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</creatorcontrib><description>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=CN&NR=118171065A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=CN&NR=118171065A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG JIANXIONG</creatorcontrib><creatorcontrib>CHI QINGGUANG</creatorcontrib><creatorcontrib>LIANG TIANTIAN</creatorcontrib><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><description>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzlAJCIEdIUKxEC70ImlMo1LIyVxVbv3ByEOwPL_8ubZo2TlEcZvO5yCgvP4SixeIJL27OCJQg44QVFV5uRv97o0I4l3EwaI7KZABlUpqf-gSG2PyUtcZrMOg9Dq90W2vpzr4mpo4IZkwJYSaVNU1ub2YDf73XH7j3kD5hM6mQ</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>YANG JIANXIONG</creator><creator>CHI QINGGUANG</creator><creator>LIANG TIANTIAN</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><author>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118171065A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG JIANXIONG</creatorcontrib><creatorcontrib>CHI QINGGUANG</creatorcontrib><creatorcontrib>LIANG TIANTIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG JIANXIONG</au><au>CHI QINGGUANG</au><au>LIANG TIANTIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><date>2024-06-11</date><risdate>2024</risdate><abstract>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118171065A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20JIANXIONG&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118171065A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |