Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism

The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG JIANXIONG, CHI QINGGUANG, LIANG TIANTIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG JIANXIONG
CHI QINGGUANG
LIANG TIANTIAN
description The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118171065A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118171065A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118171065A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzlAJCIEdIUKxEC70ImlMo1LIyVxVbv3ByEOwPL_8ubZo2TlEcZvO5yCgvP4SixeIJL27OCJQg44QVFV5uRv97o0I4l3EwaI7KZABlUpqf-gSG2PyUtcZrMOg9Dq90W2vpzr4mpo4IZkwJYSaVNU1ub2YDf73XH7j3kD5hM6mQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><source>esp@cenet</source><creator>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</creator><creatorcontrib>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</creatorcontrib><description>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171065A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=CN&amp;NR=118171065A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG JIANXIONG</creatorcontrib><creatorcontrib>CHI QINGGUANG</creatorcontrib><creatorcontrib>LIANG TIANTIAN</creatorcontrib><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><description>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzlAJCIEdIUKxEC70ImlMo1LIyVxVbv3ByEOwPL_8ubZo2TlEcZvO5yCgvP4SixeIJL27OCJQg44QVFV5uRv97o0I4l3EwaI7KZABlUpqf-gSG2PyUtcZrMOg9Dq90W2vpzr4mpo4IZkwJYSaVNU1ub2YDf73XH7j3kD5hM6mQ</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>YANG JIANXIONG</creator><creator>CHI QINGGUANG</creator><creator>LIANG TIANTIAN</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><author>YANG JIANXIONG ; CHI QINGGUANG ; LIANG TIANTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118171065A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG JIANXIONG</creatorcontrib><creatorcontrib>CHI QINGGUANG</creatorcontrib><creatorcontrib>LIANG TIANTIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG JIANXIONG</au><au>CHI QINGGUANG</au><au>LIANG TIANTIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism</title><date>2024-06-11</date><risdate>2024</risdate><abstract>The invention discloses a motor rotor fault diagnosis method based on a CNN-BiLSTM-residual module-attention mechanism, and belongs to the technical field of fault diagnosis, and the method comprises the following steps: S1, employing an improved Chernobelian disaster algorithm ICDO to optimize VMD parameters; s2, after the initial fault data of the motor rotor is decomposed through VMD, IMF components with fault feature signal components are screened out according to a correlation coefficient criterion and kurtosis, and then signal reconstruction is carried out; s3, solving a time domain feature and a frequency domain feature of the reconstructed signal, and screening data features by using a comprehensive analysis method; and S4, inputting the screened data features into the CNN-BiLSTM-residual module-attention mechanism network to carry out fault diagnosis. According to the motor rotor fault diagnosis method based on the CNN-BiLSTM-residual error module-attention mechanism, motor rotor fault diagnosis can</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118171065A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Motor rotor fault diagnosis method based on CNN-BiLSTM-residual module-attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20JIANXIONG&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118171065A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true