Deep learning-based accompaniment extraction method and system, storage medium and equipment
The invention discloses an accompaniment extraction method and system based on deep learning, a storage medium and equipment, and belongs to the technical field of short-distance wireless communication, and the method comprises the steps: carrying out the framing of a song PCM signal at a wireless t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG LINGZHI ZHU YONG LI QIANG YE DONGXIANG |
description | The invention discloses an accompaniment extraction method and system based on deep learning, a storage medium and equipment, and belongs to the technical field of short-distance wireless communication, and the method comprises the steps: carrying out the framing of a song PCM signal at a wireless transmitting end, and carrying out the windowing according to the frames, and obtaining a windowing signal; performing time-frequency transformation on the windowed signal by using improved discrete cosine transform to obtain an MDCT spectral coefficient; performing feature extraction on the windowed signal to obtain an MDFT amplitude spectrum corresponding to the windowed signal; inputting the MDFT amplitude spectrum into a pre-trained neural network model to obtain a floating value mask; performing point multiplication on the MDCT spectral coefficient and the floating value mask to obtain the spectral coefficient of the accompaniment signal; according to the spectrum coefficient of the accompaniment signal, contin |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118155592A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118155592A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118155592A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAUheEsDqK-Q9ztUCWgo1TFyclRKNf0WAPNTUxuQd_eKj6A0xm-84_VZQdE3YESO26LK2U0mqwNPhI7DxaNpySy4gJrD7mHwbnR-ZUFfqGzhEQtBmpc77-ER-_iJ52q0Y26jNlvJ2p-2J-rY4EYauRIFgypq1NZrktjzGa5Xf3zeQPYujwt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based accompaniment extraction method and system, storage medium and equipment</title><source>esp@cenet</source><creator>WANG LINGZHI ; ZHU YONG ; LI QIANG ; YE DONGXIANG</creator><creatorcontrib>WANG LINGZHI ; ZHU YONG ; LI QIANG ; YE DONGXIANG</creatorcontrib><description>The invention discloses an accompaniment extraction method and system based on deep learning, a storage medium and equipment, and belongs to the technical field of short-distance wireless communication, and the method comprises the steps: carrying out the framing of a song PCM signal at a wireless transmitting end, and carrying out the windowing according to the frames, and obtaining a windowing signal; performing time-frequency transformation on the windowed signal by using improved discrete cosine transform to obtain an MDCT spectral coefficient; performing feature extraction on the windowed signal to obtain an MDFT amplitude spectrum corresponding to the windowed signal; inputting the MDFT amplitude spectrum into a pre-trained neural network model to obtain a floating value mask; performing point multiplication on the MDCT spectral coefficient and the floating value mask to obtain the spectral coefficient of the accompaniment signal; according to the spectrum coefficient of the accompaniment signal, contin</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROPHONIC MUSICAL INSTRUMENTS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240607&DB=EPODOC&CC=CN&NR=118155592A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240607&DB=EPODOC&CC=CN&NR=118155592A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LINGZHI</creatorcontrib><creatorcontrib>ZHU YONG</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>YE DONGXIANG</creatorcontrib><title>Deep learning-based accompaniment extraction method and system, storage medium and equipment</title><description>The invention discloses an accompaniment extraction method and system based on deep learning, a storage medium and equipment, and belongs to the technical field of short-distance wireless communication, and the method comprises the steps: carrying out the framing of a song PCM signal at a wireless transmitting end, and carrying out the windowing according to the frames, and obtaining a windowing signal; performing time-frequency transformation on the windowed signal by using improved discrete cosine transform to obtain an MDCT spectral coefficient; performing feature extraction on the windowed signal to obtain an MDFT amplitude spectrum corresponding to the windowed signal; inputting the MDFT amplitude spectrum into a pre-trained neural network model to obtain a floating value mask; performing point multiplication on the MDCT spectral coefficient and the floating value mask to obtain the spectral coefficient of the accompaniment signal; according to the spectrum coefficient of the accompaniment signal, contin</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROPHONIC MUSICAL INSTRUMENTS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAUheEsDqK-Q9ztUCWgo1TFyclRKNf0WAPNTUxuQd_eKj6A0xm-84_VZQdE3YESO26LK2U0mqwNPhI7DxaNpySy4gJrD7mHwbnR-ZUFfqGzhEQtBmpc77-ER-_iJ52q0Y26jNlvJ2p-2J-rY4EYauRIFgypq1NZrktjzGa5Xf3zeQPYujwt</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>WANG LINGZHI</creator><creator>ZHU YONG</creator><creator>LI QIANG</creator><creator>YE DONGXIANG</creator><scope>EVB</scope></search><sort><creationdate>20240607</creationdate><title>Deep learning-based accompaniment extraction method and system, storage medium and equipment</title><author>WANG LINGZHI ; ZHU YONG ; LI QIANG ; YE DONGXIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118155592A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROPHONIC MUSICAL INSTRUMENTS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LINGZHI</creatorcontrib><creatorcontrib>ZHU YONG</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>YE DONGXIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LINGZHI</au><au>ZHU YONG</au><au>LI QIANG</au><au>YE DONGXIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based accompaniment extraction method and system, storage medium and equipment</title><date>2024-06-07</date><risdate>2024</risdate><abstract>The invention discloses an accompaniment extraction method and system based on deep learning, a storage medium and equipment, and belongs to the technical field of short-distance wireless communication, and the method comprises the steps: carrying out the framing of a song PCM signal at a wireless transmitting end, and carrying out the windowing according to the frames, and obtaining a windowing signal; performing time-frequency transformation on the windowed signal by using improved discrete cosine transform to obtain an MDCT spectral coefficient; performing feature extraction on the windowed signal to obtain an MDFT amplitude spectrum corresponding to the windowed signal; inputting the MDFT amplitude spectrum into a pre-trained neural network model to obtain a floating value mask; performing point multiplication on the MDCT spectral coefficient and the floating value mask to obtain the spectral coefficient of the accompaniment signal; according to the spectrum coefficient of the accompaniment signal, contin</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118155592A |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTROPHONIC MUSICAL INSTRUMENTS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Deep learning-based accompaniment extraction method and system, storage medium and equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LINGZHI&rft.date=2024-06-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118155592A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |