Machine learning-based polyurethane self-flowing floor flatness detection and optimization method
The invention discloses a machine learning-based polyurethane self-flowing floor flatness detection and optimization method. The method comprises the following steps of 1, multi-source data acquisition and fusion; 2, applying and optimizing a feature extraction depth prediction network; 2.1) constru...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHEN QULIN TAN ZHI LUO XUENING ZHAO XIN HUANG WENHAO FENG BINBIN LIU YU |
description | The invention discloses a machine learning-based polyurethane self-flowing floor flatness detection and optimization method. The method comprises the following steps of 1, multi-source data acquisition and fusion; 2, applying and optimizing a feature extraction depth prediction network; 2.1) constructing a coding-decoding convolutional network based on the fused data in the step 1, and performing depth residual prediction by adopting a residual structure; 2.2) processing the original depth map Dorig by using a ReLU activation function and a convolutional layer weight Wk; high-precision depth residual error information is output through adjustment of an activation function and a learning rate alpha k, and the original depth map is optimized by utilizing the predicted depth residual error information, so that the accuracy of the depth information is improved; step 3, performing accurate flatness evaluation and iteration; 3.1) the optimized depth information is used for three-dimensional reconstruction, and a hi |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118135359A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118135359A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118135359A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAURLtxIeod4gG6KKGgSykVN7pyX77J1AbS_0MSET29QTyAm3kwb2ZZ0ZnM5BjKgyI7vtc3SrAqiH89IvJExSX4sR69PItXhRJLUmakpCwyTHbCitgqCdnN7k3fYi53setqMZJP2Py4qrbH_tqdagQZkAIZMPLQXZpm1-hWt_uD_mfzAYHZPqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based polyurethane self-flowing floor flatness detection and optimization method</title><source>esp@cenet</source><creator>SHEN QULIN ; TAN ZHI ; LUO XUENING ; ZHAO XIN ; HUANG WENHAO ; FENG BINBIN ; LIU YU</creator><creatorcontrib>SHEN QULIN ; TAN ZHI ; LUO XUENING ; ZHAO XIN ; HUANG WENHAO ; FENG BINBIN ; LIU YU</creatorcontrib><description>The invention discloses a machine learning-based polyurethane self-flowing floor flatness detection and optimization method. The method comprises the following steps of 1, multi-source data acquisition and fusion; 2, applying and optimizing a feature extraction depth prediction network; 2.1) constructing a coding-decoding convolutional network based on the fused data in the step 1, and performing depth residual prediction by adopting a residual structure; 2.2) processing the original depth map Dorig by using a ReLU activation function and a convolutional layer weight Wk; high-precision depth residual error information is output through adjustment of an activation function and a learning rate alpha k, and the original depth map is optimized by utilizing the predicted depth residual error information, so that the accuracy of the depth information is improved; step 3, performing accurate flatness evaluation and iteration; 3.1) the optimized depth information is used for three-dimensional reconstruction, and a hi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240604&DB=EPODOC&CC=CN&NR=118135359A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240604&DB=EPODOC&CC=CN&NR=118135359A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN QULIN</creatorcontrib><creatorcontrib>TAN ZHI</creatorcontrib><creatorcontrib>LUO XUENING</creatorcontrib><creatorcontrib>ZHAO XIN</creatorcontrib><creatorcontrib>HUANG WENHAO</creatorcontrib><creatorcontrib>FENG BINBIN</creatorcontrib><creatorcontrib>LIU YU</creatorcontrib><title>Machine learning-based polyurethane self-flowing floor flatness detection and optimization method</title><description>The invention discloses a machine learning-based polyurethane self-flowing floor flatness detection and optimization method. The method comprises the following steps of 1, multi-source data acquisition and fusion; 2, applying and optimizing a feature extraction depth prediction network; 2.1) constructing a coding-decoding convolutional network based on the fused data in the step 1, and performing depth residual prediction by adopting a residual structure; 2.2) processing the original depth map Dorig by using a ReLU activation function and a convolutional layer weight Wk; high-precision depth residual error information is output through adjustment of an activation function and a learning rate alpha k, and the original depth map is optimized by utilizing the predicted depth residual error information, so that the accuracy of the depth information is improved; step 3, performing accurate flatness evaluation and iteration; 3.1) the optimized depth information is used for three-dimensional reconstruction, and a hi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAURLtxIeod4gG6KKGgSykVN7pyX77J1AbS_0MSET29QTyAm3kwb2ZZ0ZnM5BjKgyI7vtc3SrAqiH89IvJExSX4sR69PItXhRJLUmakpCwyTHbCitgqCdnN7k3fYi53setqMZJP2Py4qrbH_tqdagQZkAIZMPLQXZpm1-hWt_uD_mfzAYHZPqo</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>SHEN QULIN</creator><creator>TAN ZHI</creator><creator>LUO XUENING</creator><creator>ZHAO XIN</creator><creator>HUANG WENHAO</creator><creator>FENG BINBIN</creator><creator>LIU YU</creator><scope>EVB</scope></search><sort><creationdate>20240604</creationdate><title>Machine learning-based polyurethane self-flowing floor flatness detection and optimization method</title><author>SHEN QULIN ; TAN ZHI ; LUO XUENING ; ZHAO XIN ; HUANG WENHAO ; FENG BINBIN ; LIU YU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118135359A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN QULIN</creatorcontrib><creatorcontrib>TAN ZHI</creatorcontrib><creatorcontrib>LUO XUENING</creatorcontrib><creatorcontrib>ZHAO XIN</creatorcontrib><creatorcontrib>HUANG WENHAO</creatorcontrib><creatorcontrib>FENG BINBIN</creatorcontrib><creatorcontrib>LIU YU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN QULIN</au><au>TAN ZHI</au><au>LUO XUENING</au><au>ZHAO XIN</au><au>HUANG WENHAO</au><au>FENG BINBIN</au><au>LIU YU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based polyurethane self-flowing floor flatness detection and optimization method</title><date>2024-06-04</date><risdate>2024</risdate><abstract>The invention discloses a machine learning-based polyurethane self-flowing floor flatness detection and optimization method. The method comprises the following steps of 1, multi-source data acquisition and fusion; 2, applying and optimizing a feature extraction depth prediction network; 2.1) constructing a coding-decoding convolutional network based on the fused data in the step 1, and performing depth residual prediction by adopting a residual structure; 2.2) processing the original depth map Dorig by using a ReLU activation function and a convolutional layer weight Wk; high-precision depth residual error information is output through adjustment of an activation function and a learning rate alpha k, and the original depth map is optimized by utilizing the predicted depth residual error information, so that the accuracy of the depth information is improved; step 3, performing accurate flatness evaluation and iteration; 3.1) the optimized depth information is used for three-dimensional reconstruction, and a hi</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118135359A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Machine learning-based polyurethane self-flowing floor flatness detection and optimization method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20QULIN&rft.date=2024-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118135359A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |