Industrial control anomaly detection method for complex uncertain unbalanced data set

The invention provides an industrial control anomaly detection method for a complex, uncertain and unbalanced data set, and the method comprises the following steps: carrying out the targeted training of an anomaly detection model through employing a real, complex, uncertain and unbalanced data set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN CHENJIE, FAN ZONGXIAN, LIU JUN, CHEN LISHA, LIN JINHUANG, CHEN CHEN, ZHANG KUNSAN, WANG WENTING, CHENG ZESEN, ZHU YASHAN, ZOU WEIFU, CAI HONGMING, ZENG ZHEN, YANG WEI, WANG YIQI, CHEN ZHENG, HUANG LIUPING, FU SHICHEN, SHU FEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN CHENJIE
FAN ZONGXIAN
LIU JUN
CHEN LISHA
LIN JINHUANG
CHEN CHEN
ZHANG KUNSAN
WANG WENTING
CHENG ZESEN
ZHU YASHAN
ZOU WEIFU
CAI HONGMING
ZENG ZHEN
YANG WEI
WANG YIQI
CHEN ZHENG
HUANG LIUPING
FU SHICHEN
SHU FEI
description The invention provides an industrial control anomaly detection method for a complex, uncertain and unbalanced data set, and the method comprises the following steps: carrying out the targeted training of an anomaly detection model through employing a real, complex, uncertain and unbalanced data set in an industrial control system, and obtaining a basic model # imgabs0 #; the AC-GAN model is trained to reach Nash equilibrium; using the synthesized training data set to train an anomaly detection model; and performing weighted combination on the two results according to a weight strategy to obtain final classification judgment. According to the method, challenges of complex, uncertain and unbalanced data sets are effectively dealt with in the field of industrial control anomaly detection, so that the model is more suitable for data features in a real industrial environment, and the accuracy and robustness of anomaly detection are improved. 本发明提供了一种面向复杂不确定不平衡数据集的工控异常检测方法,包括以下步骤:使用工业控制系统中真实复杂不确定且不平衡数据集,对异常检测模型进行有针
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118133212A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118133212A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118133212A3</originalsourceid><addsrcrecordid>eNqNijEOwjAMALMwIOAP5gEMaRZWVBXBwgRzZRJXVErsKHEl-D0ZeADT3Um3No8rh6VqmTGCF9YiEZAlYfxAICWvszAk0pcEmKS0KeVIb1jYU1GcudkTI7YMEFARKunWrCaMlXY_bsz-PNz7y4GyjFQzemLSsb9Ze7TOdbY7uX-eLzhjObQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial control anomaly detection method for complex uncertain unbalanced data set</title><source>esp@cenet</source><creator>CHEN CHENJIE ; FAN ZONGXIAN ; LIU JUN ; CHEN LISHA ; LIN JINHUANG ; CHEN CHEN ; ZHANG KUNSAN ; WANG WENTING ; CHENG ZESEN ; ZHU YASHAN ; ZOU WEIFU ; CAI HONGMING ; ZENG ZHEN ; YANG WEI ; WANG YIQI ; CHEN ZHENG ; HUANG LIUPING ; FU SHICHEN ; SHU FEI</creator><creatorcontrib>CHEN CHENJIE ; FAN ZONGXIAN ; LIU JUN ; CHEN LISHA ; LIN JINHUANG ; CHEN CHEN ; ZHANG KUNSAN ; WANG WENTING ; CHENG ZESEN ; ZHU YASHAN ; ZOU WEIFU ; CAI HONGMING ; ZENG ZHEN ; YANG WEI ; WANG YIQI ; CHEN ZHENG ; HUANG LIUPING ; FU SHICHEN ; SHU FEI</creatorcontrib><description>The invention provides an industrial control anomaly detection method for a complex, uncertain and unbalanced data set, and the method comprises the following steps: carrying out the targeted training of an anomaly detection model through employing a real, complex, uncertain and unbalanced data set in an industrial control system, and obtaining a basic model # imgabs0 #; the AC-GAN model is trained to reach Nash equilibrium; using the synthesized training data set to train an anomaly detection model; and performing weighted combination on the two results according to a weight strategy to obtain final classification judgment. According to the method, challenges of complex, uncertain and unbalanced data sets are effectively dealt with in the field of industrial control anomaly detection, so that the model is more suitable for data features in a real industrial environment, and the accuracy and robustness of anomaly detection are improved. 本发明提供了一种面向复杂不确定不平衡数据集的工控异常检测方法,包括以下步骤:使用工业控制系统中真实复杂不确定且不平衡数据集,对异常检测模型进行有针</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118133212A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118133212A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN CHENJIE</creatorcontrib><creatorcontrib>FAN ZONGXIAN</creatorcontrib><creatorcontrib>LIU JUN</creatorcontrib><creatorcontrib>CHEN LISHA</creatorcontrib><creatorcontrib>LIN JINHUANG</creatorcontrib><creatorcontrib>CHEN CHEN</creatorcontrib><creatorcontrib>ZHANG KUNSAN</creatorcontrib><creatorcontrib>WANG WENTING</creatorcontrib><creatorcontrib>CHENG ZESEN</creatorcontrib><creatorcontrib>ZHU YASHAN</creatorcontrib><creatorcontrib>ZOU WEIFU</creatorcontrib><creatorcontrib>CAI HONGMING</creatorcontrib><creatorcontrib>ZENG ZHEN</creatorcontrib><creatorcontrib>YANG WEI</creatorcontrib><creatorcontrib>WANG YIQI</creatorcontrib><creatorcontrib>CHEN ZHENG</creatorcontrib><creatorcontrib>HUANG LIUPING</creatorcontrib><creatorcontrib>FU SHICHEN</creatorcontrib><creatorcontrib>SHU FEI</creatorcontrib><title>Industrial control anomaly detection method for complex uncertain unbalanced data set</title><description>The invention provides an industrial control anomaly detection method for a complex, uncertain and unbalanced data set, and the method comprises the following steps: carrying out the targeted training of an anomaly detection model through employing a real, complex, uncertain and unbalanced data set in an industrial control system, and obtaining a basic model # imgabs0 #; the AC-GAN model is trained to reach Nash equilibrium; using the synthesized training data set to train an anomaly detection model; and performing weighted combination on the two results according to a weight strategy to obtain final classification judgment. According to the method, challenges of complex, uncertain and unbalanced data sets are effectively dealt with in the field of industrial control anomaly detection, so that the model is more suitable for data features in a real industrial environment, and the accuracy and robustness of anomaly detection are improved. 本发明提供了一种面向复杂不确定不平衡数据集的工控异常检测方法,包括以下步骤:使用工业控制系统中真实复杂不确定且不平衡数据集,对异常检测模型进行有针</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEOwjAMALMwIOAP5gEMaRZWVBXBwgRzZRJXVErsKHEl-D0ZeADT3Um3No8rh6VqmTGCF9YiEZAlYfxAICWvszAk0pcEmKS0KeVIb1jYU1GcudkTI7YMEFARKunWrCaMlXY_bsz-PNz7y4GyjFQzemLSsb9Ze7TOdbY7uX-eLzhjObQ</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>CHEN CHENJIE</creator><creator>FAN ZONGXIAN</creator><creator>LIU JUN</creator><creator>CHEN LISHA</creator><creator>LIN JINHUANG</creator><creator>CHEN CHEN</creator><creator>ZHANG KUNSAN</creator><creator>WANG WENTING</creator><creator>CHENG ZESEN</creator><creator>ZHU YASHAN</creator><creator>ZOU WEIFU</creator><creator>CAI HONGMING</creator><creator>ZENG ZHEN</creator><creator>YANG WEI</creator><creator>WANG YIQI</creator><creator>CHEN ZHENG</creator><creator>HUANG LIUPING</creator><creator>FU SHICHEN</creator><creator>SHU FEI</creator><scope>EVB</scope></search><sort><creationdate>20240604</creationdate><title>Industrial control anomaly detection method for complex uncertain unbalanced data set</title><author>CHEN CHENJIE ; FAN ZONGXIAN ; LIU JUN ; CHEN LISHA ; LIN JINHUANG ; CHEN CHEN ; ZHANG KUNSAN ; WANG WENTING ; CHENG ZESEN ; ZHU YASHAN ; ZOU WEIFU ; CAI HONGMING ; ZENG ZHEN ; YANG WEI ; WANG YIQI ; CHEN ZHENG ; HUANG LIUPING ; FU SHICHEN ; SHU FEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118133212A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN CHENJIE</creatorcontrib><creatorcontrib>FAN ZONGXIAN</creatorcontrib><creatorcontrib>LIU JUN</creatorcontrib><creatorcontrib>CHEN LISHA</creatorcontrib><creatorcontrib>LIN JINHUANG</creatorcontrib><creatorcontrib>CHEN CHEN</creatorcontrib><creatorcontrib>ZHANG KUNSAN</creatorcontrib><creatorcontrib>WANG WENTING</creatorcontrib><creatorcontrib>CHENG ZESEN</creatorcontrib><creatorcontrib>ZHU YASHAN</creatorcontrib><creatorcontrib>ZOU WEIFU</creatorcontrib><creatorcontrib>CAI HONGMING</creatorcontrib><creatorcontrib>ZENG ZHEN</creatorcontrib><creatorcontrib>YANG WEI</creatorcontrib><creatorcontrib>WANG YIQI</creatorcontrib><creatorcontrib>CHEN ZHENG</creatorcontrib><creatorcontrib>HUANG LIUPING</creatorcontrib><creatorcontrib>FU SHICHEN</creatorcontrib><creatorcontrib>SHU FEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN CHENJIE</au><au>FAN ZONGXIAN</au><au>LIU JUN</au><au>CHEN LISHA</au><au>LIN JINHUANG</au><au>CHEN CHEN</au><au>ZHANG KUNSAN</au><au>WANG WENTING</au><au>CHENG ZESEN</au><au>ZHU YASHAN</au><au>ZOU WEIFU</au><au>CAI HONGMING</au><au>ZENG ZHEN</au><au>YANG WEI</au><au>WANG YIQI</au><au>CHEN ZHENG</au><au>HUANG LIUPING</au><au>FU SHICHEN</au><au>SHU FEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial control anomaly detection method for complex uncertain unbalanced data set</title><date>2024-06-04</date><risdate>2024</risdate><abstract>The invention provides an industrial control anomaly detection method for a complex, uncertain and unbalanced data set, and the method comprises the following steps: carrying out the targeted training of an anomaly detection model through employing a real, complex, uncertain and unbalanced data set in an industrial control system, and obtaining a basic model # imgabs0 #; the AC-GAN model is trained to reach Nash equilibrium; using the synthesized training data set to train an anomaly detection model; and performing weighted combination on the two results according to a weight strategy to obtain final classification judgment. According to the method, challenges of complex, uncertain and unbalanced data sets are effectively dealt with in the field of industrial control anomaly detection, so that the model is more suitable for data features in a real industrial environment, and the accuracy and robustness of anomaly detection are improved. 本发明提供了一种面向复杂不确定不平衡数据集的工控异常检测方法,包括以下步骤:使用工业控制系统中真实复杂不确定且不平衡数据集,对异常检测模型进行有针</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118133212A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Industrial control anomaly detection method for complex uncertain unbalanced data set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20CHENJIE&rft.date=2024-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118133212A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true