Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment

The invention discloses a mechanical arm control system calibration method based on deep reinforcement learning, a storage device and electronic equipment. The method specifically comprises the steps that system errors are defined, wherein the system errors comprise camera pose errors and mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YI YONG, WAN FURUI, YANG ZHIYU, WANG ZAN, LIAN CHENXUAN, CHEN HUIBIN, YU FANG, DONG MENGHAO, WU JUNTING, HU HAOHONG, CHEN LIJIA, DAI ZHEN, ZHAO YONGZHI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YI YONG
WAN FURUI
YANG ZHIYU
WANG ZAN
LIAN CHENXUAN
CHEN HUIBIN
YU FANG
DONG MENGHAO
WU JUNTING
HU HAOHONG
CHEN LIJIA
DAI ZHEN
ZHAO YONGZHI
description The invention discloses a mechanical arm control system calibration method based on deep reinforcement learning, a storage device and electronic equipment. The method specifically comprises the steps that system errors are defined, wherein the system errors comprise camera pose errors and mechanical arm coordinate system errors; secondly, calibrating the pose error of the camera, acquiring multiple pieces of pose information and corresponding real images of the target object from a reality system, acquiring simulation images with the same number in a simulation system according to the pose information, processing the two groups of images by using a deep reinforcement learning model, and determining the pose error of the target object according to the processing result; and the camera pose error calibration of the two sets of systems is guided. And finally, the coordinate system error of the mechanical arm is calibrated, the calibration process is similar to calibration of the camera pose error, however, the t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118123838A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118123838A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118123838A3</originalsourceid><addsrcrecordid>eNqNjbEKwjAURbs4iPoPz12H2qWrlIqLTu7lNbltA-lLTKLg4rcbwQ9wuhw4995l8b5ATSxGsSUOMyknKThL8RUTMrI1feBknNCMNDlNPUdoyqwBTwFGBhcUZkgiCw5iZNxRTC7wiCw9jQKxaIKFytv5i3B_GP9trIvFwDZi88tVsT21t-a8h3cdomcFQeqaa1nW5aGqq_pY_eN8AOVLSR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment</title><source>esp@cenet</source><creator>YI YONG ; WAN FURUI ; YANG ZHIYU ; WANG ZAN ; LIAN CHENXUAN ; CHEN HUIBIN ; YU FANG ; DONG MENGHAO ; WU JUNTING ; HU HAOHONG ; CHEN LIJIA ; DAI ZHEN ; ZHAO YONGZHI</creator><creatorcontrib>YI YONG ; WAN FURUI ; YANG ZHIYU ; WANG ZAN ; LIAN CHENXUAN ; CHEN HUIBIN ; YU FANG ; DONG MENGHAO ; WU JUNTING ; HU HAOHONG ; CHEN LIJIA ; DAI ZHEN ; ZHAO YONGZHI</creatorcontrib><description>The invention discloses a mechanical arm control system calibration method based on deep reinforcement learning, a storage device and electronic equipment. The method specifically comprises the steps that system errors are defined, wherein the system errors comprise camera pose errors and mechanical arm coordinate system errors; secondly, calibrating the pose error of the camera, acquiring multiple pieces of pose information and corresponding real images of the target object from a reality system, acquiring simulation images with the same number in a simulation system according to the pose information, processing the two groups of images by using a deep reinforcement learning model, and determining the pose error of the target object according to the processing result; and the camera pose error calibration of the two sets of systems is guided. And finally, the coordinate system error of the mechanical arm is calibrated, the calibration process is similar to calibration of the camera pose error, however, the t</description><language>chi ; eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118123838A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118123838A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YI YONG</creatorcontrib><creatorcontrib>WAN FURUI</creatorcontrib><creatorcontrib>YANG ZHIYU</creatorcontrib><creatorcontrib>WANG ZAN</creatorcontrib><creatorcontrib>LIAN CHENXUAN</creatorcontrib><creatorcontrib>CHEN HUIBIN</creatorcontrib><creatorcontrib>YU FANG</creatorcontrib><creatorcontrib>DONG MENGHAO</creatorcontrib><creatorcontrib>WU JUNTING</creatorcontrib><creatorcontrib>HU HAOHONG</creatorcontrib><creatorcontrib>CHEN LIJIA</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>ZHAO YONGZHI</creatorcontrib><title>Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment</title><description>The invention discloses a mechanical arm control system calibration method based on deep reinforcement learning, a storage device and electronic equipment. The method specifically comprises the steps that system errors are defined, wherein the system errors comprise camera pose errors and mechanical arm coordinate system errors; secondly, calibrating the pose error of the camera, acquiring multiple pieces of pose information and corresponding real images of the target object from a reality system, acquiring simulation images with the same number in a simulation system according to the pose information, processing the two groups of images by using a deep reinforcement learning model, and determining the pose error of the target object according to the processing result; and the camera pose error calibration of the two sets of systems is guided. And finally, the coordinate system error of the mechanical arm is calibrated, the calibration process is similar to calibration of the camera pose error, however, the t</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEKwjAURbs4iPoPz12H2qWrlIqLTu7lNbltA-lLTKLg4rcbwQ9wuhw4995l8b5ATSxGsSUOMyknKThL8RUTMrI1feBknNCMNDlNPUdoyqwBTwFGBhcUZkgiCw5iZNxRTC7wiCw9jQKxaIKFytv5i3B_GP9trIvFwDZi88tVsT21t-a8h3cdomcFQeqaa1nW5aGqq_pY_eN8AOVLSR4</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>YI YONG</creator><creator>WAN FURUI</creator><creator>YANG ZHIYU</creator><creator>WANG ZAN</creator><creator>LIAN CHENXUAN</creator><creator>CHEN HUIBIN</creator><creator>YU FANG</creator><creator>DONG MENGHAO</creator><creator>WU JUNTING</creator><creator>HU HAOHONG</creator><creator>CHEN LIJIA</creator><creator>DAI ZHEN</creator><creator>ZHAO YONGZHI</creator><scope>EVB</scope></search><sort><creationdate>20240604</creationdate><title>Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment</title><author>YI YONG ; WAN FURUI ; YANG ZHIYU ; WANG ZAN ; LIAN CHENXUAN ; CHEN HUIBIN ; YU FANG ; DONG MENGHAO ; WU JUNTING ; HU HAOHONG ; CHEN LIJIA ; DAI ZHEN ; ZHAO YONGZHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118123838A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YI YONG</creatorcontrib><creatorcontrib>WAN FURUI</creatorcontrib><creatorcontrib>YANG ZHIYU</creatorcontrib><creatorcontrib>WANG ZAN</creatorcontrib><creatorcontrib>LIAN CHENXUAN</creatorcontrib><creatorcontrib>CHEN HUIBIN</creatorcontrib><creatorcontrib>YU FANG</creatorcontrib><creatorcontrib>DONG MENGHAO</creatorcontrib><creatorcontrib>WU JUNTING</creatorcontrib><creatorcontrib>HU HAOHONG</creatorcontrib><creatorcontrib>CHEN LIJIA</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>ZHAO YONGZHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YI YONG</au><au>WAN FURUI</au><au>YANG ZHIYU</au><au>WANG ZAN</au><au>LIAN CHENXUAN</au><au>CHEN HUIBIN</au><au>YU FANG</au><au>DONG MENGHAO</au><au>WU JUNTING</au><au>HU HAOHONG</au><au>CHEN LIJIA</au><au>DAI ZHEN</au><au>ZHAO YONGZHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment</title><date>2024-06-04</date><risdate>2024</risdate><abstract>The invention discloses a mechanical arm control system calibration method based on deep reinforcement learning, a storage device and electronic equipment. The method specifically comprises the steps that system errors are defined, wherein the system errors comprise camera pose errors and mechanical arm coordinate system errors; secondly, calibrating the pose error of the camera, acquiring multiple pieces of pose information and corresponding real images of the target object from a reality system, acquiring simulation images with the same number in a simulation system according to the pose information, processing the two groups of images by using a deep reinforcement learning model, and determining the pose error of the target object according to the processing result; and the camera pose error calibration of the two sets of systems is guided. And finally, the coordinate system error of the mechanical arm is calibrated, the calibration process is similar to calibration of the camera pose error, however, the t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118123838A
source esp@cenet
subjects CHAMBERS PROVIDED WITH MANIPULATION DEVICES
HAND TOOLS
MANIPULATORS
PERFORMING OPERATIONS
PORTABLE POWER-DRIVEN TOOLS
TRANSPORTING
title Mechanical arm control system calibration method based on deep reinforcement learning, storage device and electronic equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YI%20YONG&rft.date=2024-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118123838A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true