Urinary incontinence monitoring device and monitoring method based on image processing

The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LEI, HE GUOQIAN, CHEN XIN, XU LINNAN, LIU RONGHUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LEI
HE GUOQIAN
CHEN XIN
XU LINNAN
LIU RONGHUA
description The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118121229A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118121229A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118121229A3</originalsourceid><addsrcrecordid>eNqNirEKAjEQBa-xEPUf1g-wSGy0lEOxslLbIybPc8HshiQI_r0pLCytBmZm2l0vmcXlN7F4lcoC8aCowlVbGSngxc04Cb82oj400M0VBFIhjm4EpawepbRh3k3u7lmw-HLWLQ_7c39cIemAkpyHoA79yZiNscba7W79z_MBfQA6Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><source>esp@cenet</source><creator>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</creator><creatorcontrib>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</creatorcontrib><description>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118121229A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240604&amp;DB=EPODOC&amp;CC=CN&amp;NR=118121229A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HE GUOQIAN</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>XU LINNAN</creatorcontrib><creatorcontrib>LIU RONGHUA</creatorcontrib><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><description>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKAjEQBa-xEPUf1g-wSGy0lEOxslLbIybPc8HshiQI_r0pLCytBmZm2l0vmcXlN7F4lcoC8aCowlVbGSngxc04Cb82oj400M0VBFIhjm4EpawepbRh3k3u7lmw-HLWLQ_7c39cIemAkpyHoA79yZiNscba7W79z_MBfQA6Jg</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>WANG LEI</creator><creator>HE GUOQIAN</creator><creator>CHEN XIN</creator><creator>XU LINNAN</creator><creator>LIU RONGHUA</creator><scope>EVB</scope></search><sort><creationdate>20240604</creationdate><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><author>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118121229A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HE GUOQIAN</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>XU LINNAN</creatorcontrib><creatorcontrib>LIU RONGHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>HE GUOQIAN</au><au>CHEN XIN</au><au>XU LINNAN</au><au>LIU RONGHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><date>2024-06-04</date><risdate>2024</risdate><abstract>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118121229A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Urinary incontinence monitoring device and monitoring method based on image processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2024-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118121229A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true