Urinary incontinence monitoring device and monitoring method based on image processing
The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage mo...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG LEI HE GUOQIAN CHEN XIN XU LINNAN LIU RONGHUA |
description | The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118121229A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118121229A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118121229A3</originalsourceid><addsrcrecordid>eNqNirEKAjEQBa-xEPUf1g-wSGy0lEOxslLbIybPc8HshiQI_r0pLCytBmZm2l0vmcXlN7F4lcoC8aCowlVbGSngxc04Cb82oj400M0VBFIhjm4EpawepbRh3k3u7lmw-HLWLQ_7c39cIemAkpyHoA79yZiNscba7W79z_MBfQA6Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><source>esp@cenet</source><creator>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</creator><creatorcontrib>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</creatorcontrib><description>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240604&DB=EPODOC&CC=CN&NR=118121229A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240604&DB=EPODOC&CC=CN&NR=118121229A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HE GUOQIAN</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>XU LINNAN</creatorcontrib><creatorcontrib>LIU RONGHUA</creatorcontrib><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><description>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKAjEQBa-xEPUf1g-wSGy0lEOxslLbIybPc8HshiQI_r0pLCytBmZm2l0vmcXlN7F4lcoC8aCowlVbGSngxc04Cb82oj400M0VBFIhjm4EpawepbRh3k3u7lmw-HLWLQ_7c39cIemAkpyHoA79yZiNscba7W79z_MBfQA6Jg</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>WANG LEI</creator><creator>HE GUOQIAN</creator><creator>CHEN XIN</creator><creator>XU LINNAN</creator><creator>LIU RONGHUA</creator><scope>EVB</scope></search><sort><creationdate>20240604</creationdate><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><author>WANG LEI ; HE GUOQIAN ; CHEN XIN ; XU LINNAN ; LIU RONGHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118121229A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HE GUOQIAN</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>XU LINNAN</creatorcontrib><creatorcontrib>LIU RONGHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>HE GUOQIAN</au><au>CHEN XIN</au><au>XU LINNAN</au><au>LIU RONGHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Urinary incontinence monitoring device and monitoring method based on image processing</title><date>2024-06-04</date><risdate>2024</risdate><abstract>The invention relates to the field of image analysis, in particular to a urinary incontinence monitoring device and method based on image processing. Comprising an ultrasonic sensing module, a behavior analysis module, a user information module, a urinary incontinence prediction module, a storage module, an alarm module and a communication module. According to the method, the limitation of a single data source is overcome by integrating the ultrasonic imaging data and the daily behavior data of the user, and the prediction model can analyze the urinary incontinence risk from more dimensions through multi-source data fusion, so that the prediction accuracy and reliability are remarkably improved. Multi-modal data such as physiological data, behavior information and environmental factors of a patient are collected, and a prediction model is established by utilizing a machine learning or deep learning algorithm, so that the urination demand of the patient is predicted in real time. Compared with a traditional tr</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118121229A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY |
title | Urinary incontinence monitoring device and monitoring method based on image processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2024-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118121229A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |