Domain sensitive unloading method for deep reasoning service in edge network
The invention relates to a domain sensitive unloading method oriented to a deep reasoning service in an edge network. In order to solve the problem that a deep learning model of domain specific knowledge deployed on an edge server has significant difference on performance expressions of different re...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI JIALE SHI YALIANG XU XIANYANG ZHAO ZHIWEI CONG RONG |
description | The invention relates to a domain sensitive unloading method oriented to a deep reasoning service in an edge network. In order to solve the problem that a deep learning model of domain specific knowledge deployed on an edge server has significant difference on performance expressions of different reasoning tasks, the invention provides a method for selecting and deploying the edge server of a model domain most suitable for the reasoning tasks by fully utilizing diversity of the edge server model domain. Therefore, the unloading performance is improved. The method comprises the following steps: designing a field-sensitive unloading-oriented performance index for describing the sensitivity degrees of different learning model fields and unloading tasks to the model fields; designing an efficient retrieval mechanism, and retrieving information of a learning model deployment field on the edge server so as to determine the edge server providing inference service; and a calculation unloading algorithm oriented to th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118118545A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118118545A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118118545A3</originalsourceid><addsrcrecordid>eNrjZPBxyc9NzMxTKE7NK84sySxLVSjNy8lPTMnMS1fITS3JyE9RSMsvUkhJTS1QKEpNLM7PA8kUpxaVZSanKgA1pqakpyrkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwsgMjUxdTQmRg0Atp01_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Domain sensitive unloading method for deep reasoning service in edge network</title><source>esp@cenet</source><creator>LI JIALE ; SHI YALIANG ; XU XIANYANG ; ZHAO ZHIWEI ; CONG RONG</creator><creatorcontrib>LI JIALE ; SHI YALIANG ; XU XIANYANG ; ZHAO ZHIWEI ; CONG RONG</creatorcontrib><description>The invention relates to a domain sensitive unloading method oriented to a deep reasoning service in an edge network. In order to solve the problem that a deep learning model of domain specific knowledge deployed on an edge server has significant difference on performance expressions of different reasoning tasks, the invention provides a method for selecting and deploying the edge server of a model domain most suitable for the reasoning tasks by fully utilizing diversity of the edge server model domain. Therefore, the unloading performance is improved. The method comprises the following steps: designing a field-sensitive unloading-oriented performance index for describing the sensitivity degrees of different learning model fields and unloading tasks to the model fields; designing an efficient retrieval mechanism, and retrieving information of a learning model deployment field on the edge server so as to determine the edge server providing inference service; and a calculation unloading algorithm oriented to th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118118545A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118118545A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI JIALE</creatorcontrib><creatorcontrib>SHI YALIANG</creatorcontrib><creatorcontrib>XU XIANYANG</creatorcontrib><creatorcontrib>ZHAO ZHIWEI</creatorcontrib><creatorcontrib>CONG RONG</creatorcontrib><title>Domain sensitive unloading method for deep reasoning service in edge network</title><description>The invention relates to a domain sensitive unloading method oriented to a deep reasoning service in an edge network. In order to solve the problem that a deep learning model of domain specific knowledge deployed on an edge server has significant difference on performance expressions of different reasoning tasks, the invention provides a method for selecting and deploying the edge server of a model domain most suitable for the reasoning tasks by fully utilizing diversity of the edge server model domain. Therefore, the unloading performance is improved. The method comprises the following steps: designing a field-sensitive unloading-oriented performance index for describing the sensitivity degrees of different learning model fields and unloading tasks to the model fields; designing an efficient retrieval mechanism, and retrieving information of a learning model deployment field on the edge server so as to determine the edge server providing inference service; and a calculation unloading algorithm oriented to th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBxyc9NzMxTKE7NK84sySxLVSjNy8lPTMnMS1fITS3JyE9RSMsvUkhJTS1QKEpNLM7PA8kUpxaVZSanKgA1pqakpyrkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwsgMjUxdTQmRg0Atp01_Q</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>LI JIALE</creator><creator>SHI YALIANG</creator><creator>XU XIANYANG</creator><creator>ZHAO ZHIWEI</creator><creator>CONG RONG</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Domain sensitive unloading method for deep reasoning service in edge network</title><author>LI JIALE ; SHI YALIANG ; XU XIANYANG ; ZHAO ZHIWEI ; CONG RONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118118545A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>LI JIALE</creatorcontrib><creatorcontrib>SHI YALIANG</creatorcontrib><creatorcontrib>XU XIANYANG</creatorcontrib><creatorcontrib>ZHAO ZHIWEI</creatorcontrib><creatorcontrib>CONG RONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI JIALE</au><au>SHI YALIANG</au><au>XU XIANYANG</au><au>ZHAO ZHIWEI</au><au>CONG RONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Domain sensitive unloading method for deep reasoning service in edge network</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention relates to a domain sensitive unloading method oriented to a deep reasoning service in an edge network. In order to solve the problem that a deep learning model of domain specific knowledge deployed on an edge server has significant difference on performance expressions of different reasoning tasks, the invention provides a method for selecting and deploying the edge server of a model domain most suitable for the reasoning tasks by fully utilizing diversity of the edge server model domain. Therefore, the unloading performance is improved. The method comprises the following steps: designing a field-sensitive unloading-oriented performance index for describing the sensitivity degrees of different learning model fields and unloading tasks to the model fields; designing an efficient retrieval mechanism, and retrieving information of a learning model deployment field on the edge server so as to determine the edge server providing inference service; and a calculation unloading algorithm oriented to th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118118545A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Domain sensitive unloading method for deep reasoning service in edge network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20JIALE&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118118545A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |