Metametric learning-based few-sample website fingerprint identification method

The invention discloses a few-sample website fingerprint identification method based on meta-metric learning. The method specifically comprises the following steps: 1, collecting Tor network anonymous traffic, and preprocessing the Tor network anonymous traffic to form a target data set; 2, selectin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIE HUIHUI, LYU QIUYUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIE HUIHUI
LYU QIUYUN
description The invention discloses a few-sample website fingerprint identification method based on meta-metric learning. The method specifically comprises the following steps: 1, collecting Tor network anonymous traffic, and preprocessing the Tor network anonymous traffic to form a target data set; 2, selecting an auxiliary data set, and dividing meta-scene tasks according to a supervision target; 3, constructing a meta-metric learning network model, for each meta-scene task, a feature extractor is responsible for extracting original features from network tracking, a task adaptive modulation unit is responsible for adjusting a channel weight, generating a discriminative feature pair of the current task, and generating a sub-scene task; the ridge regression module is responsible for representing each position in the query feature map as a weighted sum of support features of a given category. And 4, training and testing the metric learning network model. The method improves the recognition accuracy and robustness of the s
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118118248A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118118248A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118118248A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoP8QMyVB26SlFc7OReXpMbfZAmIXnQ3zeDHyBcOMM53K0anxBaIIWtDqASOb7NTBVOe6ym0pID9Iq5skD7ZlFy4SiaHaKwZ0vCKer28UlurzaeQsXhx5063m-v4WGQ04SaySJCpmHsur7tdOmv53-aL3K5N1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Metametric learning-based few-sample website fingerprint identification method</title><source>esp@cenet</source><creator>XIE HUIHUI ; LYU QIUYUN</creator><creatorcontrib>XIE HUIHUI ; LYU QIUYUN</creatorcontrib><description>The invention discloses a few-sample website fingerprint identification method based on meta-metric learning. The method specifically comprises the following steps: 1, collecting Tor network anonymous traffic, and preprocessing the Tor network anonymous traffic to form a target data set; 2, selecting an auxiliary data set, and dividing meta-scene tasks according to a supervision target; 3, constructing a meta-metric learning network model, for each meta-scene task, a feature extractor is responsible for extracting original features from network tracking, a task adaptive modulation unit is responsible for adjusting a channel weight, generating a discriminative feature pair of the current task, and generating a sub-scene task; the ridge regression module is responsible for representing each position in the query feature map as a weighted sum of support features of a given category. And 4, training and testing the metric learning network model. The method improves the recognition accuracy and robustness of the s</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118118248A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118118248A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIE HUIHUI</creatorcontrib><creatorcontrib>LYU QIUYUN</creatorcontrib><title>Metametric learning-based few-sample website fingerprint identification method</title><description>The invention discloses a few-sample website fingerprint identification method based on meta-metric learning. The method specifically comprises the following steps: 1, collecting Tor network anonymous traffic, and preprocessing the Tor network anonymous traffic to form a target data set; 2, selecting an auxiliary data set, and dividing meta-scene tasks according to a supervision target; 3, constructing a meta-metric learning network model, for each meta-scene task, a feature extractor is responsible for extracting original features from network tracking, a task adaptive modulation unit is responsible for adjusting a channel weight, generating a discriminative feature pair of the current task, and generating a sub-scene task; the ridge regression module is responsible for representing each position in the query feature map as a weighted sum of support features of a given category. And 4, training and testing the metric learning network model. The method improves the recognition accuracy and robustness of the s</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoP8QMyVB26SlFc7OReXpMbfZAmIXnQ3zeDHyBcOMM53K0anxBaIIWtDqASOb7NTBVOe6ym0pID9Iq5skD7ZlFy4SiaHaKwZ0vCKer28UlurzaeQsXhx5063m-v4WGQ04SaySJCpmHsur7tdOmv53-aL3K5N1c</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>XIE HUIHUI</creator><creator>LYU QIUYUN</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Metametric learning-based few-sample website fingerprint identification method</title><author>XIE HUIHUI ; LYU QIUYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118118248A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>XIE HUIHUI</creatorcontrib><creatorcontrib>LYU QIUYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIE HUIHUI</au><au>LYU QIUYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Metametric learning-based few-sample website fingerprint identification method</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention discloses a few-sample website fingerprint identification method based on meta-metric learning. The method specifically comprises the following steps: 1, collecting Tor network anonymous traffic, and preprocessing the Tor network anonymous traffic to form a target data set; 2, selecting an auxiliary data set, and dividing meta-scene tasks according to a supervision target; 3, constructing a meta-metric learning network model, for each meta-scene task, a feature extractor is responsible for extracting original features from network tracking, a task adaptive modulation unit is responsible for adjusting a channel weight, generating a discriminative feature pair of the current task, and generating a sub-scene task; the ridge regression module is responsible for representing each position in the query feature map as a weighted sum of support features of a given category. And 4, training and testing the metric learning network model. The method improves the recognition accuracy and robustness of the s</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118118248A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Metametric learning-based few-sample website fingerprint identification method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIE%20HUIHUI&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118118248A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true