Artificial intelligence prediction method for coal sample gas desorption curve
A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG RAN WANG YUE WANG YANAN SUN LIUYONG LI WENHUI HUI BAO'AN KANG JIANHONG BAI XIAOMING |
description | A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118114590A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118114590A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118114590A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQBuAuDqK-w_kAgkEFO5aiOHVyL-Hypx6kuZBEn18RH8DpW75lM3S5ihcWG0hiRQgyITIoZTjhKhppRn2oI6-ZWD-v2DkF0GQLORTN6bv4mV9YNwtvQ8Hm56rZXi_3_rZD0hElWUZEHfvBmLMxx1O77w7_nDdVDDb9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><source>esp@cenet</source><creator>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</creator><creatorcontrib>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</creatorcontrib><description>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118114590A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118114590A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RAN</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>WANG YANAN</creatorcontrib><creatorcontrib>SUN LIUYONG</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><creatorcontrib>HUI BAO'AN</creatorcontrib><creatorcontrib>KANG JIANHONG</creatorcontrib><creatorcontrib>BAI XIAOMING</creatorcontrib><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><description>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQBuAuDqK-w_kAgkEFO5aiOHVyL-Hypx6kuZBEn18RH8DpW75lM3S5ihcWG0hiRQgyITIoZTjhKhppRn2oI6-ZWD-v2DkF0GQLORTN6bv4mV9YNwtvQ8Hm56rZXi_3_rZD0hElWUZEHfvBmLMxx1O77w7_nDdVDDb9</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>ZHANG RAN</creator><creator>WANG YUE</creator><creator>WANG YANAN</creator><creator>SUN LIUYONG</creator><creator>LI WENHUI</creator><creator>HUI BAO'AN</creator><creator>KANG JIANHONG</creator><creator>BAI XIAOMING</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><author>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118114590A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RAN</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>WANG YANAN</creatorcontrib><creatorcontrib>SUN LIUYONG</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><creatorcontrib>HUI BAO'AN</creatorcontrib><creatorcontrib>KANG JIANHONG</creatorcontrib><creatorcontrib>BAI XIAOMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RAN</au><au>WANG YUE</au><au>WANG YANAN</au><au>SUN LIUYONG</au><au>LI WENHUI</au><au>HUI BAO'AN</au><au>KANG JIANHONG</au><au>BAI XIAOMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><date>2024-05-31</date><risdate>2024</risdate><abstract>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118114590A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS TESTING |
title | Artificial intelligence prediction method for coal sample gas desorption curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RAN&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118114590A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |