Artificial intelligence prediction method for coal sample gas desorption curve

A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG RAN, WANG YUE, WANG YANAN, SUN LIUYONG, LI WENHUI, HUI BAO'AN, KANG JIANHONG, BAI XIAOMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG RAN
WANG YUE
WANG YANAN
SUN LIUYONG
LI WENHUI
HUI BAO'AN
KANG JIANHONG
BAI XIAOMING
description A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118114590A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118114590A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118114590A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQBuAuDqK-w_kAgkEFO5aiOHVyL-Hypx6kuZBEn18RH8DpW75lM3S5ihcWG0hiRQgyITIoZTjhKhppRn2oI6-ZWD-v2DkF0GQLORTN6bv4mV9YNwtvQ8Hm56rZXi_3_rZD0hElWUZEHfvBmLMxx1O77w7_nDdVDDb9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><source>esp@cenet</source><creator>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</creator><creatorcontrib>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</creatorcontrib><description>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118114590A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118114590A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RAN</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>WANG YANAN</creatorcontrib><creatorcontrib>SUN LIUYONG</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><creatorcontrib>HUI BAO'AN</creatorcontrib><creatorcontrib>KANG JIANHONG</creatorcontrib><creatorcontrib>BAI XIAOMING</creatorcontrib><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><description>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQBuAuDqK-w_kAgkEFO5aiOHVyL-Hypx6kuZBEn18RH8DpW75lM3S5ihcWG0hiRQgyITIoZTjhKhppRn2oI6-ZWD-v2DkF0GQLORTN6bv4mV9YNwtvQ8Hm56rZXi_3_rZD0hElWUZEHfvBmLMxx1O77w7_nDdVDDb9</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>ZHANG RAN</creator><creator>WANG YUE</creator><creator>WANG YANAN</creator><creator>SUN LIUYONG</creator><creator>LI WENHUI</creator><creator>HUI BAO'AN</creator><creator>KANG JIANHONG</creator><creator>BAI XIAOMING</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><author>ZHANG RAN ; WANG YUE ; WANG YANAN ; SUN LIUYONG ; LI WENHUI ; HUI BAO'AN ; KANG JIANHONG ; BAI XIAOMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118114590A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RAN</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>WANG YANAN</creatorcontrib><creatorcontrib>SUN LIUYONG</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><creatorcontrib>HUI BAO'AN</creatorcontrib><creatorcontrib>KANG JIANHONG</creatorcontrib><creatorcontrib>BAI XIAOMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RAN</au><au>WANG YUE</au><au>WANG YANAN</au><au>SUN LIUYONG</au><au>LI WENHUI</au><au>HUI BAO'AN</au><au>KANG JIANHONG</au><au>BAI XIAOMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence prediction method for coal sample gas desorption curve</title><date>2024-05-31</date><risdate>2024</risdate><abstract>A coal sample gas desorption curve artificial intelligence prediction method comprises the steps that coal sample gas desorption curve prediction is divided into desorption curve historical prediction and desorption curve advanced prediction, gas desorption data under a certain coal sample particle size and adsorption equilibrium pressure is obtained through an experiment, and the gas desorption data is divided into a training set and a test set and subjected to normalization processing; for the historical prediction of the desorption curve, selecting two artificial intelligence machine learning models, taking the gas desorption training set data as model input, and then performing weighted combination on output results of the two single models on the test set data to obtain a final result of the historical prediction of the desorption curve; and for advanced prediction of the desorption curve, only one artificial intelligence machine learning model is used, training set data is used as model input, and a fin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118114590A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Artificial intelligence prediction method for coal sample gas desorption curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RAN&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118114590A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true