Meteorological quality data analysis method and system based on multi-source data fusion and AI

The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUI KE, LIANG YUANXIN, SHANG NANXUAN, XIA XIANG'AO, ZHAO HUJIA, WANG PENG, ZHENG YU, ZHU JIBIAO, ZHAO HENGHENG, ZHU JUN, WEI YAO, YAO WENRUI, CHA HYE-JUNG, ZHANG XUTAO, SONG JINGJING, LI LEI, WANG YUPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUI KE
LIANG YUANXIN
SHANG NANXUAN
XIA XIANG'AO
ZHAO HUJIA
WANG PENG
ZHENG YU
ZHU JIBIAO
ZHAO HENGHENG
ZHU JUN
WEI YAO
YAO WENRUI
CHA HYE-JUNG
ZHANG XUTAO
SONG JINGJING
LI LEI
WANG YUPENG
description The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118114201A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118114201A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118114201A3</originalsourceid><addsrcrecordid>eNqNizEOwjAMRbMwIOAO5gCVCDCwVhUIBpjYK5O4JVJSl9oZenuK4ABMX0_v_bmpr6TEA0dug8MIr4wx6AgeFQE7jKMEgUT6ZD-xBxlFKcEDhTxwBylHDYVwHhx9X02WMIlPXF6WZtZgFFr9dmHWp-O9OhfUc03So6OOtK5u1h6s3W83ttz907wBhLk8kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><source>esp@cenet</source><creator>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</creator><creatorcontrib>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</creatorcontrib><description>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118114201A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240531&amp;DB=EPODOC&amp;CC=CN&amp;NR=118114201A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUI KE</creatorcontrib><creatorcontrib>LIANG YUANXIN</creatorcontrib><creatorcontrib>SHANG NANXUAN</creatorcontrib><creatorcontrib>XIA XIANG'AO</creatorcontrib><creatorcontrib>ZHAO HUJIA</creatorcontrib><creatorcontrib>WANG PENG</creatorcontrib><creatorcontrib>ZHENG YU</creatorcontrib><creatorcontrib>ZHU JIBIAO</creatorcontrib><creatorcontrib>ZHAO HENGHENG</creatorcontrib><creatorcontrib>ZHU JUN</creatorcontrib><creatorcontrib>WEI YAO</creatorcontrib><creatorcontrib>YAO WENRUI</creatorcontrib><creatorcontrib>CHA HYE-JUNG</creatorcontrib><creatorcontrib>ZHANG XUTAO</creatorcontrib><creatorcontrib>SONG JINGJING</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>WANG YUPENG</creatorcontrib><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><description>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAMRbMwIOAO5gCVCDCwVhUIBpjYK5O4JVJSl9oZenuK4ABMX0_v_bmpr6TEA0dug8MIr4wx6AgeFQE7jKMEgUT6ZD-xBxlFKcEDhTxwBylHDYVwHhx9X02WMIlPXF6WZtZgFFr9dmHWp-O9OhfUc03So6OOtK5u1h6s3W83ttz907wBhLk8kg</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>GUI KE</creator><creator>LIANG YUANXIN</creator><creator>SHANG NANXUAN</creator><creator>XIA XIANG'AO</creator><creator>ZHAO HUJIA</creator><creator>WANG PENG</creator><creator>ZHENG YU</creator><creator>ZHU JIBIAO</creator><creator>ZHAO HENGHENG</creator><creator>ZHU JUN</creator><creator>WEI YAO</creator><creator>YAO WENRUI</creator><creator>CHA HYE-JUNG</creator><creator>ZHANG XUTAO</creator><creator>SONG JINGJING</creator><creator>LI LEI</creator><creator>WANG YUPENG</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><author>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118114201A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUI KE</creatorcontrib><creatorcontrib>LIANG YUANXIN</creatorcontrib><creatorcontrib>SHANG NANXUAN</creatorcontrib><creatorcontrib>XIA XIANG'AO</creatorcontrib><creatorcontrib>ZHAO HUJIA</creatorcontrib><creatorcontrib>WANG PENG</creatorcontrib><creatorcontrib>ZHENG YU</creatorcontrib><creatorcontrib>ZHU JIBIAO</creatorcontrib><creatorcontrib>ZHAO HENGHENG</creatorcontrib><creatorcontrib>ZHU JUN</creatorcontrib><creatorcontrib>WEI YAO</creatorcontrib><creatorcontrib>YAO WENRUI</creatorcontrib><creatorcontrib>CHA HYE-JUNG</creatorcontrib><creatorcontrib>ZHANG XUTAO</creatorcontrib><creatorcontrib>SONG JINGJING</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>WANG YUPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUI KE</au><au>LIANG YUANXIN</au><au>SHANG NANXUAN</au><au>XIA XIANG'AO</au><au>ZHAO HUJIA</au><au>WANG PENG</au><au>ZHENG YU</au><au>ZHU JIBIAO</au><au>ZHAO HENGHENG</au><au>ZHU JUN</au><au>WEI YAO</au><au>YAO WENRUI</au><au>CHA HYE-JUNG</au><au>ZHANG XUTAO</au><au>SONG JINGJING</au><au>LI LEI</au><au>WANG YUPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118114201A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Meteorological quality data analysis method and system based on multi-source data fusion and AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUI%20KE&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118114201A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true