Meteorological quality data analysis method and system based on multi-source data fusion and AI
The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation compone...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GUI KE LIANG YUANXIN SHANG NANXUAN XIA XIANG'AO ZHAO HUJIA WANG PENG ZHENG YU ZHU JIBIAO ZHAO HENGHENG ZHU JUN WEI YAO YAO WENRUI CHA HYE-JUNG ZHANG XUTAO SONG JINGJING LI LEI WANG YUPENG |
description | The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118114201A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118114201A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118114201A3</originalsourceid><addsrcrecordid>eNqNizEOwjAMRbMwIOAO5gCVCDCwVhUIBpjYK5O4JVJSl9oZenuK4ABMX0_v_bmpr6TEA0dug8MIr4wx6AgeFQE7jKMEgUT6ZD-xBxlFKcEDhTxwBylHDYVwHhx9X02WMIlPXF6WZtZgFFr9dmHWp-O9OhfUc03So6OOtK5u1h6s3W83ttz907wBhLk8kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><source>esp@cenet</source><creator>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</creator><creatorcontrib>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</creatorcontrib><description>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118114201A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118114201A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUI KE</creatorcontrib><creatorcontrib>LIANG YUANXIN</creatorcontrib><creatorcontrib>SHANG NANXUAN</creatorcontrib><creatorcontrib>XIA XIANG'AO</creatorcontrib><creatorcontrib>ZHAO HUJIA</creatorcontrib><creatorcontrib>WANG PENG</creatorcontrib><creatorcontrib>ZHENG YU</creatorcontrib><creatorcontrib>ZHU JIBIAO</creatorcontrib><creatorcontrib>ZHAO HENGHENG</creatorcontrib><creatorcontrib>ZHU JUN</creatorcontrib><creatorcontrib>WEI YAO</creatorcontrib><creatorcontrib>YAO WENRUI</creatorcontrib><creatorcontrib>CHA HYE-JUNG</creatorcontrib><creatorcontrib>ZHANG XUTAO</creatorcontrib><creatorcontrib>SONG JINGJING</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>WANG YUPENG</creatorcontrib><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><description>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAMRbMwIOAO5gCVCDCwVhUIBpjYK5O4JVJSl9oZenuK4ABMX0_v_bmpr6TEA0dug8MIr4wx6AgeFQE7jKMEgUT6ZD-xBxlFKcEDhTxwBylHDYVwHhx9X02WMIlPXF6WZtZgFFr9dmHWp-O9OhfUc03So6OOtK5u1h6s3W83ttz907wBhLk8kg</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>GUI KE</creator><creator>LIANG YUANXIN</creator><creator>SHANG NANXUAN</creator><creator>XIA XIANG'AO</creator><creator>ZHAO HUJIA</creator><creator>WANG PENG</creator><creator>ZHENG YU</creator><creator>ZHU JIBIAO</creator><creator>ZHAO HENGHENG</creator><creator>ZHU JUN</creator><creator>WEI YAO</creator><creator>YAO WENRUI</creator><creator>CHA HYE-JUNG</creator><creator>ZHANG XUTAO</creator><creator>SONG JINGJING</creator><creator>LI LEI</creator><creator>WANG YUPENG</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><author>GUI KE ; LIANG YUANXIN ; SHANG NANXUAN ; XIA XIANG'AO ; ZHAO HUJIA ; WANG PENG ; ZHENG YU ; ZHU JIBIAO ; ZHAO HENGHENG ; ZHU JUN ; WEI YAO ; YAO WENRUI ; CHA HYE-JUNG ; ZHANG XUTAO ; SONG JINGJING ; LI LEI ; WANG YUPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118114201A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUI KE</creatorcontrib><creatorcontrib>LIANG YUANXIN</creatorcontrib><creatorcontrib>SHANG NANXUAN</creatorcontrib><creatorcontrib>XIA XIANG'AO</creatorcontrib><creatorcontrib>ZHAO HUJIA</creatorcontrib><creatorcontrib>WANG PENG</creatorcontrib><creatorcontrib>ZHENG YU</creatorcontrib><creatorcontrib>ZHU JIBIAO</creatorcontrib><creatorcontrib>ZHAO HENGHENG</creatorcontrib><creatorcontrib>ZHU JUN</creatorcontrib><creatorcontrib>WEI YAO</creatorcontrib><creatorcontrib>YAO WENRUI</creatorcontrib><creatorcontrib>CHA HYE-JUNG</creatorcontrib><creatorcontrib>ZHANG XUTAO</creatorcontrib><creatorcontrib>SONG JINGJING</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><creatorcontrib>WANG YUPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUI KE</au><au>LIANG YUANXIN</au><au>SHANG NANXUAN</au><au>XIA XIANG'AO</au><au>ZHAO HUJIA</au><au>WANG PENG</au><au>ZHENG YU</au><au>ZHU JIBIAO</au><au>ZHAO HENGHENG</au><au>ZHU JUN</au><au>WEI YAO</au><au>YAO WENRUI</au><au>CHA HYE-JUNG</au><au>ZHANG XUTAO</au><au>SONG JINGJING</au><au>LI LEI</au><au>WANG YUPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Meteorological quality data analysis method and system based on multi-source data fusion and AI</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention provides a meteorological quality data analysis method and system based on multi-source data fusion and AI, and the method comprises the steps: carrying out the endogenous learning of a meteorological data vector representation component and a station data vector representation component in a basic training link of a model; and performing example-driven learning on an initial multi-source data visibility recognition model at least covering an initial meteorological data vector representation component and an initial station data vector representation component obtained by endogenous learning, so that basic training is divided into two links. In the endogenous learning link, single type of system meteorological data and station observation data can be independently trained to obtain a feature mining model capability, and the features of the system meteorological data and the station observation data are continuously learned in combination with example-driven learning to complete visibility grade</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118114201A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Meteorological quality data analysis method and system based on multi-source data fusion and AI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUI%20KE&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118114201A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |