Hydrogen fuel cell life prediction method based on ensemble learning
The invention discloses a hydrogen fuel cell life prediction method based on integrated learning, and the method comprises the steps: obtaining multivariable historical monitoring data in the working process of a hydrogen fuel cell, carrying out the feature selection of the multivariable historical...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG CHU ZHANG XINRONG SUO LEIMING PENG TIAN TAO ZIHAN ZHANG YUE LI ZHENGBO XIONG JINLIN LI XI QIAO XIUJIE |
description | The invention discloses a hydrogen fuel cell life prediction method based on integrated learning, and the method comprises the steps: obtaining multivariable historical monitoring data in the working process of a hydrogen fuel cell, carrying out the feature selection of the multivariable historical monitoring data through a limit gradient lifting algorithm, determining a health index and an optimal input variable set, and obtaining an optimal input matrix; a Blending integration-based life prediction model is constructed, a base learning layer is composed of a DBN, a GRU and a TCN, and a meta learning layer is composed of a GPR; optimizing the key hyper-parameters of the integrated model by using an improved artificial rabbit optimization algorithm IARO; the constructed integrated model is trained in combination with the optimal input matrix and IARO, and a Blending integrated prediction model after optimization training is obtained; and a final prediction result of the residual life is obtained by combining |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118112446A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118112446A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118112446A3</originalsourceid><addsrcrecordid>eNrjZHDxqEwpyk9PzVNIK03NUUhOzclRyMlMS1UoKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8lPzilNzk3JSFXJSE4vyMvPSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFoaGRiYmZozExagCc6DKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hydrogen fuel cell life prediction method based on ensemble learning</title><source>esp@cenet</source><creator>ZHANG CHU ; ZHANG XINRONG ; SUO LEIMING ; PENG TIAN ; TAO ZIHAN ; ZHANG YUE ; LI ZHENGBO ; XIONG JINLIN ; LI XI ; QIAO XIUJIE</creator><creatorcontrib>ZHANG CHU ; ZHANG XINRONG ; SUO LEIMING ; PENG TIAN ; TAO ZIHAN ; ZHANG YUE ; LI ZHENGBO ; XIONG JINLIN ; LI XI ; QIAO XIUJIE</creatorcontrib><description>The invention discloses a hydrogen fuel cell life prediction method based on integrated learning, and the method comprises the steps: obtaining multivariable historical monitoring data in the working process of a hydrogen fuel cell, carrying out the feature selection of the multivariable historical monitoring data through a limit gradient lifting algorithm, determining a health index and an optimal input variable set, and obtaining an optimal input matrix; a Blending integration-based life prediction model is constructed, a base learning layer is composed of a DBN, a GRU and a TCN, and a meta learning layer is composed of a GPR; optimizing the key hyper-parameters of the integrated model by using an improved artificial rabbit optimization algorithm IARO; the constructed integrated model is trained in combination with the optimal input matrix and IARO, and a Blending integrated prediction model after optimization training is obtained; and a final prediction result of the residual life is obtained by combining</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118112446A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118112446A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>SUO LEIMING</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>TAO ZIHAN</creatorcontrib><creatorcontrib>ZHANG YUE</creatorcontrib><creatorcontrib>LI ZHENGBO</creatorcontrib><creatorcontrib>XIONG JINLIN</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>QIAO XIUJIE</creatorcontrib><title>Hydrogen fuel cell life prediction method based on ensemble learning</title><description>The invention discloses a hydrogen fuel cell life prediction method based on integrated learning, and the method comprises the steps: obtaining multivariable historical monitoring data in the working process of a hydrogen fuel cell, carrying out the feature selection of the multivariable historical monitoring data through a limit gradient lifting algorithm, determining a health index and an optimal input variable set, and obtaining an optimal input matrix; a Blending integration-based life prediction model is constructed, a base learning layer is composed of a DBN, a GRU and a TCN, and a meta learning layer is composed of a GPR; optimizing the key hyper-parameters of the integrated model by using an improved artificial rabbit optimization algorithm IARO; the constructed integrated model is trained in combination with the optimal input matrix and IARO, and a Blending integrated prediction model after optimization training is obtained; and a final prediction result of the residual life is obtained by combining</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxqEwpyk9PzVNIK03NUUhOzclRyMlMS1UoKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8lPzilNzk3JSFXJSE4vyMvPSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFoaGRiYmZozExagCc6DKY</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>ZHANG CHU</creator><creator>ZHANG XINRONG</creator><creator>SUO LEIMING</creator><creator>PENG TIAN</creator><creator>TAO ZIHAN</creator><creator>ZHANG YUE</creator><creator>LI ZHENGBO</creator><creator>XIONG JINLIN</creator><creator>LI XI</creator><creator>QIAO XIUJIE</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Hydrogen fuel cell life prediction method based on ensemble learning</title><author>ZHANG CHU ; ZHANG XINRONG ; SUO LEIMING ; PENG TIAN ; TAO ZIHAN ; ZHANG YUE ; LI ZHENGBO ; XIONG JINLIN ; LI XI ; QIAO XIUJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118112446A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CHU</creatorcontrib><creatorcontrib>ZHANG XINRONG</creatorcontrib><creatorcontrib>SUO LEIMING</creatorcontrib><creatorcontrib>PENG TIAN</creatorcontrib><creatorcontrib>TAO ZIHAN</creatorcontrib><creatorcontrib>ZHANG YUE</creatorcontrib><creatorcontrib>LI ZHENGBO</creatorcontrib><creatorcontrib>XIONG JINLIN</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>QIAO XIUJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CHU</au><au>ZHANG XINRONG</au><au>SUO LEIMING</au><au>PENG TIAN</au><au>TAO ZIHAN</au><au>ZHANG YUE</au><au>LI ZHENGBO</au><au>XIONG JINLIN</au><au>LI XI</au><au>QIAO XIUJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hydrogen fuel cell life prediction method based on ensemble learning</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention discloses a hydrogen fuel cell life prediction method based on integrated learning, and the method comprises the steps: obtaining multivariable historical monitoring data in the working process of a hydrogen fuel cell, carrying out the feature selection of the multivariable historical monitoring data through a limit gradient lifting algorithm, determining a health index and an optimal input variable set, and obtaining an optimal input matrix; a Blending integration-based life prediction model is constructed, a base learning layer is composed of a DBN, a GRU and a TCN, and a meta learning layer is composed of a GPR; optimizing the key hyper-parameters of the integrated model by using an improved artificial rabbit optimization algorithm IARO; the constructed integrated model is trained in combination with the optimal input matrix and IARO, and a Blending integrated prediction model after optimization training is obtained; and a final prediction result of the residual life is obtained by combining</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118112446A |
source | esp@cenet |
subjects | MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Hydrogen fuel cell life prediction method based on ensemble learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CHU&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118112446A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |