Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve
The invention discloses a glass viscoelastic mechanical parameter derivation method based on a creep flexibility main curve, which comprises the following steps: firstly, carrying out compression creep test on a cylindrical glass sample at a plurality of temperatures above a glass transition point t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIAO SHIHU LIU KUN FANG DONGSHENG ZHOU JIAN HUANG BAOCHENG |
description | The invention discloses a glass viscoelastic mechanical parameter derivation method based on a creep flexibility main curve, which comprises the following steps: firstly, carrying out compression creep test on a cylindrical glass sample at a plurality of temperatures above a glass transition point temperature to obtain creep flexibility curves at the plurality of temperatures; then, a creep flexibility curve at the multiple temperatures between the appropriate starting time and the appropriate ending time is intercepted; then selecting the lowest temperature from the plurality of temperatures as a reference temperature, keeping the creep flexibility curve at the reference temperature immovable, and translating the creep flexibility curves at other temperatures rightwards so as to construct a creep flexibility main curve function; and finally, converting the creep flexibility main curve function into a time domain shear relaxation modulus, and calculating empirical parameters in the simple thermal rheological |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118111820A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118111820A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118111820A3</originalsourceid><addsrcrecordid>eNqNijsOAjEQQ9NQIOAOwwGQWGho0YpPRUUfzWa92pHyUxIiuD0pOACFZT_bS6VvlnOmKtkEtFjEkIOZ2YthS5ETOxQkGpGkcpHg217mMNLAGSM1NgmINFm8ZRAr5UOOpdWvVLFWi4ltxubnK7W9Xp79fYcYNHJkA4-i-0fXnbqmw_58_OfzBdIFPW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve</title><source>esp@cenet</source><creator>XIAO SHIHU ; LIU KUN ; FANG DONGSHENG ; ZHOU JIAN ; HUANG BAOCHENG</creator><creatorcontrib>XIAO SHIHU ; LIU KUN ; FANG DONGSHENG ; ZHOU JIAN ; HUANG BAOCHENG</creatorcontrib><description>The invention discloses a glass viscoelastic mechanical parameter derivation method based on a creep flexibility main curve, which comprises the following steps: firstly, carrying out compression creep test on a cylindrical glass sample at a plurality of temperatures above a glass transition point temperature to obtain creep flexibility curves at the plurality of temperatures; then, a creep flexibility curve at the multiple temperatures between the appropriate starting time and the appropriate ending time is intercepted; then selecting the lowest temperature from the plurality of temperatures as a reference temperature, keeping the creep flexibility curve at the reference temperature immovable, and translating the creep flexibility curves at other temperatures rightwards so as to construct a creep flexibility main curve function; and finally, converting the creep flexibility main curve function into a time domain shear relaxation modulus, and calculating empirical parameters in the simple thermal rheological</description><language>chi ; eng</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118111820A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240531&DB=EPODOC&CC=CN&NR=118111820A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO SHIHU</creatorcontrib><creatorcontrib>LIU KUN</creatorcontrib><creatorcontrib>FANG DONGSHENG</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>HUANG BAOCHENG</creatorcontrib><title>Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve</title><description>The invention discloses a glass viscoelastic mechanical parameter derivation method based on a creep flexibility main curve, which comprises the following steps: firstly, carrying out compression creep test on a cylindrical glass sample at a plurality of temperatures above a glass transition point temperature to obtain creep flexibility curves at the plurality of temperatures; then, a creep flexibility curve at the multiple temperatures between the appropriate starting time and the appropriate ending time is intercepted; then selecting the lowest temperature from the plurality of temperatures as a reference temperature, keeping the creep flexibility curve at the reference temperature immovable, and translating the creep flexibility curves at other temperatures rightwards so as to construct a creep flexibility main curve function; and finally, converting the creep flexibility main curve function into a time domain shear relaxation modulus, and calculating empirical parameters in the simple thermal rheological</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOAjEQQ9NQIOAOwwGQWGho0YpPRUUfzWa92pHyUxIiuD0pOACFZT_bS6VvlnOmKtkEtFjEkIOZ2YthS5ETOxQkGpGkcpHg217mMNLAGSM1NgmINFm8ZRAr5UOOpdWvVLFWi4ltxubnK7W9Xp79fYcYNHJkA4-i-0fXnbqmw_58_OfzBdIFPW0</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>XIAO SHIHU</creator><creator>LIU KUN</creator><creator>FANG DONGSHENG</creator><creator>ZHOU JIAN</creator><creator>HUANG BAOCHENG</creator><scope>EVB</scope></search><sort><creationdate>20240531</creationdate><title>Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve</title><author>XIAO SHIHU ; LIU KUN ; FANG DONGSHENG ; ZHOU JIAN ; HUANG BAOCHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118111820A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO SHIHU</creatorcontrib><creatorcontrib>LIU KUN</creatorcontrib><creatorcontrib>FANG DONGSHENG</creatorcontrib><creatorcontrib>ZHOU JIAN</creatorcontrib><creatorcontrib>HUANG BAOCHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO SHIHU</au><au>LIU KUN</au><au>FANG DONGSHENG</au><au>ZHOU JIAN</au><au>HUANG BAOCHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve</title><date>2024-05-31</date><risdate>2024</risdate><abstract>The invention discloses a glass viscoelastic mechanical parameter derivation method based on a creep flexibility main curve, which comprises the following steps: firstly, carrying out compression creep test on a cylindrical glass sample at a plurality of temperatures above a glass transition point temperature to obtain creep flexibility curves at the plurality of temperatures; then, a creep flexibility curve at the multiple temperatures between the appropriate starting time and the appropriate ending time is intercepted; then selecting the lowest temperature from the plurality of temperatures as a reference temperature, keeping the creep flexibility curve at the reference temperature immovable, and translating the creep flexibility curves at other temperatures rightwards so as to construct a creep flexibility main curve function; and finally, converting the creep flexibility main curve function into a time domain shear relaxation modulus, and calculating empirical parameters in the simple thermal rheological</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118111820A |
source | esp@cenet |
subjects | INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS TESTING |
title | Glass viscoelastic mechanical parameter derivation method based on creep flexibility main curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20SHIHU&rft.date=2024-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118111820A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |