Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium
The invention discloses a low-light remote sensing image enhancement method based on Retinex, and the method comprises the steps: decomposing a to-be-enhanced low-light remote sensing image into a reflection image and an illumination image based on a Retinex theory, carrying out the feature extracti...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YOON HONGUL YAO JIAN CHEN XUEYE LI LI LIU ZHAO JIANG YI |
description | The invention discloses a low-light remote sensing image enhancement method based on Retinex, and the method comprises the steps: decomposing a to-be-enhanced low-light remote sensing image into a reflection image and an illumination image based on a Retinex theory, carrying out the feature extraction of the illumination image and the reflection image, and obtaining a reflection feature image and an illumination feature image; and fusing and reconstructing the reflection characteristic pattern and the illumination characteristic pattern to obtain a reconstructed illumination pattern and a reconstructed reflection pattern. Designing a neural network module to enhance and fuse the reconstructed illumination image and the reconstructed reflection image, fusing the enhanced reflection image and illumination image into a normal light image, and designing a local reconstruction neural network module to carry out local fine tuning on the normal light image to obtain a final enhanced image. The interpretability of th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118096624A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118096624A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118096624A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQBdNYiPoPa2_AqAQtJSgWYiH24cw9k8XcXsxt1M8Xgx9gNcUMM4zuR_-Kay4rpRbOKyhAAktJ7EwJglRGCjiIkoNW3s7I4skFyIglPDpuenk1AZa80BnKgnevg_r2e3Gw3LlxNLiZOmDy4yia7neX7BCj8TlCYwoINM9OSbKeb9J0sdou_2k-tgVBKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium</title><source>esp@cenet</source><creator>YOON HONGUL ; YAO JIAN ; CHEN XUEYE ; LI LI ; LIU ZHAO ; JIANG YI</creator><creatorcontrib>YOON HONGUL ; YAO JIAN ; CHEN XUEYE ; LI LI ; LIU ZHAO ; JIANG YI</creatorcontrib><description>The invention discloses a low-light remote sensing image enhancement method based on Retinex, and the method comprises the steps: decomposing a to-be-enhanced low-light remote sensing image into a reflection image and an illumination image based on a Retinex theory, carrying out the feature extraction of the illumination image and the reflection image, and obtaining a reflection feature image and an illumination feature image; and fusing and reconstructing the reflection characteristic pattern and the illumination characteristic pattern to obtain a reconstructed illumination pattern and a reconstructed reflection pattern. Designing a neural network module to enhance and fuse the reconstructed illumination image and the reconstructed reflection image, fusing the enhanced reflection image and illumination image into a normal light image, and designing a local reconstruction neural network module to carry out local fine tuning on the normal light image to obtain a final enhanced image. The interpretability of th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=CN&NR=118096624A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=CN&NR=118096624A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YOON HONGUL</creatorcontrib><creatorcontrib>YAO JIAN</creatorcontrib><creatorcontrib>CHEN XUEYE</creatorcontrib><creatorcontrib>LI LI</creatorcontrib><creatorcontrib>LIU ZHAO</creatorcontrib><creatorcontrib>JIANG YI</creatorcontrib><title>Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium</title><description>The invention discloses a low-light remote sensing image enhancement method based on Retinex, and the method comprises the steps: decomposing a to-be-enhanced low-light remote sensing image into a reflection image and an illumination image based on a Retinex theory, carrying out the feature extraction of the illumination image and the reflection image, and obtaining a reflection feature image and an illumination feature image; and fusing and reconstructing the reflection characteristic pattern and the illumination characteristic pattern to obtain a reconstructed illumination pattern and a reconstructed reflection pattern. Designing a neural network module to enhance and fuse the reconstructed illumination image and the reconstructed reflection image, fusing the enhanced reflection image and illumination image into a normal light image, and designing a local reconstruction neural network module to carry out local fine tuning on the normal light image to obtain a final enhanced image. The interpretability of th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQBdNYiPoPa2_AqAQtJSgWYiH24cw9k8XcXsxt1M8Xgx9gNcUMM4zuR_-Kay4rpRbOKyhAAktJ7EwJglRGCjiIkoNW3s7I4skFyIglPDpuenk1AZa80BnKgnevg_r2e3Gw3LlxNLiZOmDy4yia7neX7BCj8TlCYwoINM9OSbKeb9J0sdou_2k-tgVBKw</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>YOON HONGUL</creator><creator>YAO JIAN</creator><creator>CHEN XUEYE</creator><creator>LI LI</creator><creator>LIU ZHAO</creator><creator>JIANG YI</creator><scope>EVB</scope></search><sort><creationdate>20240528</creationdate><title>Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium</title><author>YOON HONGUL ; YAO JIAN ; CHEN XUEYE ; LI LI ; LIU ZHAO ; JIANG YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118096624A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YOON HONGUL</creatorcontrib><creatorcontrib>YAO JIAN</creatorcontrib><creatorcontrib>CHEN XUEYE</creatorcontrib><creatorcontrib>LI LI</creatorcontrib><creatorcontrib>LIU ZHAO</creatorcontrib><creatorcontrib>JIANG YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YOON HONGUL</au><au>YAO JIAN</au><au>CHEN XUEYE</au><au>LI LI</au><au>LIU ZHAO</au><au>JIANG YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium</title><date>2024-05-28</date><risdate>2024</risdate><abstract>The invention discloses a low-light remote sensing image enhancement method based on Retinex, and the method comprises the steps: decomposing a to-be-enhanced low-light remote sensing image into a reflection image and an illumination image based on a Retinex theory, carrying out the feature extraction of the illumination image and the reflection image, and obtaining a reflection feature image and an illumination feature image; and fusing and reconstructing the reflection characteristic pattern and the illumination characteristic pattern to obtain a reconstructed illumination pattern and a reconstructed reflection pattern. Designing a neural network module to enhance and fuse the reconstructed illumination image and the reconstructed reflection image, fusing the enhanced reflection image and illumination image into a normal light image, and designing a local reconstruction neural network module to carry out local fine tuning on the normal light image to obtain a final enhanced image. The interpretability of th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118096624A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Low-light remote sensing image enhancement method, device and equipment based on Retinex and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YOON%20HONGUL&rft.date=2024-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118096624A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |