Model-based event-triggered neural learning formation transformation method for multiple unmanned ships
The invention provides a model-based event-triggered neural learning formation transformation method, device and equipment for multiple unmanned ships, and a medium. The method comprises the following steps: constructing a strict feedback system of the multiple unmanned ships; constructing a radial...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG SIBO GUO KAI HUANG ZITENG LUO RENBO SU JINGWEN HUANG JINGZHI WAN JUNHAO |
description | The invention provides a model-based event-triggered neural learning formation transformation method, device and equipment for multiple unmanned ships, and a medium. The method comprises the following steps: constructing a strict feedback system of the multiple unmanned ships; constructing a radial basis function neural network; the adaptive neural network controller based on distance error estimation is used for training a neural network based on historical data to obtain each weight under a convergence condition; acquiring wind direction data based on a wind direction and wind speed sensor carried by each unmanned ship, and determining the magnitude and direction of wind force borne by each unmanned ship; based on a set model event triggering strategy of the neural network model, triggering formation transformation of each unmanned ship system, and feeding back distance error data between a navigator and each follower to the adaptive neural network controller; the technical problem that a neural network mod |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118092416A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118092416A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118092416A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoP8QMKRkV0lKK46ORenvY2DSQvIXn1-60guDodDudyp8peYwtfPaig1XiBpZLsrEUenTFk8tqDMju2uos5kLjIWjJx-WmA9LH9dB0GLy556IEDMY8vpXepzNWkI1-w-HKmlufTvb5USLFBSfQEQ5r6Zsx-dVhvze64-WfzBkBVQQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model-based event-triggered neural learning formation transformation method for multiple unmanned ships</title><source>esp@cenet</source><creator>WANG SIBO ; GUO KAI ; HUANG ZITENG ; LUO RENBO ; SU JINGWEN ; HUANG JINGZHI ; WAN JUNHAO</creator><creatorcontrib>WANG SIBO ; GUO KAI ; HUANG ZITENG ; LUO RENBO ; SU JINGWEN ; HUANG JINGZHI ; WAN JUNHAO</creatorcontrib><description>The invention provides a model-based event-triggered neural learning formation transformation method, device and equipment for multiple unmanned ships, and a medium. The method comprises the following steps: constructing a strict feedback system of the multiple unmanned ships; constructing a radial basis function neural network; the adaptive neural network controller based on distance error estimation is used for training a neural network based on historical data to obtain each weight under a convergence condition; acquiring wind direction data based on a wind direction and wind speed sensor carried by each unmanned ship, and determining the magnitude and direction of wind force borne by each unmanned ship; based on a set model event triggering strategy of the neural network model, triggering formation transformation of each unmanned ship system, and feeding back distance error data between a navigator and each follower to the adaptive neural network controller; the technical problem that a neural network mod</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=CN&NR=118092416A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=CN&NR=118092416A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG SIBO</creatorcontrib><creatorcontrib>GUO KAI</creatorcontrib><creatorcontrib>HUANG ZITENG</creatorcontrib><creatorcontrib>LUO RENBO</creatorcontrib><creatorcontrib>SU JINGWEN</creatorcontrib><creatorcontrib>HUANG JINGZHI</creatorcontrib><creatorcontrib>WAN JUNHAO</creatorcontrib><title>Model-based event-triggered neural learning formation transformation method for multiple unmanned ships</title><description>The invention provides a model-based event-triggered neural learning formation transformation method, device and equipment for multiple unmanned ships, and a medium. The method comprises the following steps: constructing a strict feedback system of the multiple unmanned ships; constructing a radial basis function neural network; the adaptive neural network controller based on distance error estimation is used for training a neural network based on historical data to obtain each weight under a convergence condition; acquiring wind direction data based on a wind direction and wind speed sensor carried by each unmanned ship, and determining the magnitude and direction of wind force borne by each unmanned ship; based on a set model event triggering strategy of the neural network model, triggering formation transformation of each unmanned ship system, and feeding back distance error data between a navigator and each follower to the adaptive neural network controller; the technical problem that a neural network mod</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoP8QMKRkV0lKK46ORenvY2DSQvIXn1-60guDodDudyp8peYwtfPaig1XiBpZLsrEUenTFk8tqDMju2uos5kLjIWjJx-WmA9LH9dB0GLy556IEDMY8vpXepzNWkI1-w-HKmlufTvb5USLFBSfQEQ5r6Zsx-dVhvze64-WfzBkBVQQU</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>WANG SIBO</creator><creator>GUO KAI</creator><creator>HUANG ZITENG</creator><creator>LUO RENBO</creator><creator>SU JINGWEN</creator><creator>HUANG JINGZHI</creator><creator>WAN JUNHAO</creator><scope>EVB</scope></search><sort><creationdate>20240528</creationdate><title>Model-based event-triggered neural learning formation transformation method for multiple unmanned ships</title><author>WANG SIBO ; GUO KAI ; HUANG ZITENG ; LUO RENBO ; SU JINGWEN ; HUANG JINGZHI ; WAN JUNHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118092416A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG SIBO</creatorcontrib><creatorcontrib>GUO KAI</creatorcontrib><creatorcontrib>HUANG ZITENG</creatorcontrib><creatorcontrib>LUO RENBO</creatorcontrib><creatorcontrib>SU JINGWEN</creatorcontrib><creatorcontrib>HUANG JINGZHI</creatorcontrib><creatorcontrib>WAN JUNHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG SIBO</au><au>GUO KAI</au><au>HUANG ZITENG</au><au>LUO RENBO</au><au>SU JINGWEN</au><au>HUANG JINGZHI</au><au>WAN JUNHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model-based event-triggered neural learning formation transformation method for multiple unmanned ships</title><date>2024-05-28</date><risdate>2024</risdate><abstract>The invention provides a model-based event-triggered neural learning formation transformation method, device and equipment for multiple unmanned ships, and a medium. The method comprises the following steps: constructing a strict feedback system of the multiple unmanned ships; constructing a radial basis function neural network; the adaptive neural network controller based on distance error estimation is used for training a neural network based on historical data to obtain each weight under a convergence condition; acquiring wind direction data based on a wind direction and wind speed sensor carried by each unmanned ship, and determining the magnitude and direction of wind force borne by each unmanned ship; based on a set model event triggering strategy of the neural network model, triggering formation transformation of each unmanned ship system, and feeding back distance error data between a navigator and each follower to the adaptive neural network controller; the technical problem that a neural network mod</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118092416A |
source | esp@cenet |
subjects | CONTROLLING PHYSICS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Model-based event-triggered neural learning formation transformation method for multiple unmanned ships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20SIBO&rft.date=2024-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118092416A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |