Model training method, network congestion prediction method, equipment and medium

The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN ZENAN, CAI PEIXIONG, HU YONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN ZENAN
CAI PEIXIONG
HU YONG
description The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118075204A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118075204A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118075204A3</originalsourceid><addsrcrecordid>eNrjZAj0zU9JzVEoKUrMzMvMS1fITS3JyE_RUchLLSnPL8pWSM7PS08tLsnMz1MoKEpNyUwGM2GqUgtLMwtyU_NKFBLzUoCiKZmluTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWh4vLOfoaGFgbmpkYGJozExagAAVzf3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model training method, network congestion prediction method, equipment and medium</title><source>esp@cenet</source><creator>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</creator><creatorcontrib>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</creatorcontrib><description>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240524&amp;DB=EPODOC&amp;CC=CN&amp;NR=118075204A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240524&amp;DB=EPODOC&amp;CC=CN&amp;NR=118075204A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN ZENAN</creatorcontrib><creatorcontrib>CAI PEIXIONG</creatorcontrib><creatorcontrib>HU YONG</creatorcontrib><title>Model training method, network congestion prediction method, equipment and medium</title><description>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj0zU9JzVEoKUrMzMvMS1fITS3JyE_RUchLLSnPL8pWSM7PS08tLsnMz1MoKEpNyUwGM2GqUgtLMwtyU_NKFBLzUoCiKZmluTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWh4vLOfoaGFgbmpkYGJozExagAAVzf3</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>CHEN ZENAN</creator><creator>CAI PEIXIONG</creator><creator>HU YONG</creator><scope>EVB</scope></search><sort><creationdate>20240524</creationdate><title>Model training method, network congestion prediction method, equipment and medium</title><author>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118075204A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN ZENAN</creatorcontrib><creatorcontrib>CAI PEIXIONG</creatorcontrib><creatorcontrib>HU YONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN ZENAN</au><au>CAI PEIXIONG</au><au>HU YONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model training method, network congestion prediction method, equipment and medium</title><date>2024-05-24</date><risdate>2024</risdate><abstract>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118075204A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Model training method, network congestion prediction method, equipment and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20ZENAN&rft.date=2024-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118075204A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true