Model training method, network congestion prediction method, equipment and medium
The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN ZENAN CAI PEIXIONG HU YONG |
description | The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118075204A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118075204A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118075204A3</originalsourceid><addsrcrecordid>eNrjZAj0zU9JzVEoKUrMzMvMS1fITS3JyE_RUchLLSnPL8pWSM7PS08tLsnMz1MoKEpNyUwGM2GqUgtLMwtyU_NKFBLzUoCiKZmluTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWh4vLOfoaGFgbmpkYGJozExagAAVzf3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model training method, network congestion prediction method, equipment and medium</title><source>esp@cenet</source><creator>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</creator><creatorcontrib>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</creatorcontrib><description>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240524&DB=EPODOC&CC=CN&NR=118075204A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240524&DB=EPODOC&CC=CN&NR=118075204A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN ZENAN</creatorcontrib><creatorcontrib>CAI PEIXIONG</creatorcontrib><creatorcontrib>HU YONG</creatorcontrib><title>Model training method, network congestion prediction method, equipment and medium</title><description>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj0zU9JzVEoKUrMzMvMS1fITS3JyE_RUchLLSnPL8pWSM7PS08tLsnMz1MoKEpNyUwGM2GqUgtLMwtyU_NKFBLzUoCiKZmluTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWh4vLOfoaGFgbmpkYGJozExagAAVzf3</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>CHEN ZENAN</creator><creator>CAI PEIXIONG</creator><creator>HU YONG</creator><scope>EVB</scope></search><sort><creationdate>20240524</creationdate><title>Model training method, network congestion prediction method, equipment and medium</title><author>CHEN ZENAN ; CAI PEIXIONG ; HU YONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118075204A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN ZENAN</creatorcontrib><creatorcontrib>CAI PEIXIONG</creatorcontrib><creatorcontrib>HU YONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN ZENAN</au><au>CAI PEIXIONG</au><au>HU YONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model training method, network congestion prediction method, equipment and medium</title><date>2024-05-24</date><risdate>2024</risdate><abstract>The invention discloses a model training method, a network congestion prediction method, equipment and a medium, and relates to the technical field of communication. The method comprises the following steps: acquiring a plurality of sample parameters and a plurality of target parameters of a sample network, wherein the sample network comprises a plurality of sample communication nodes; performing normalization processing on each sample parameter and each target parameter to obtain a sample data matrix corresponding to the sample parameter and a target data matrix corresponding to the target parameter; training a preset neural network model according to the sample data matrix and the target data matrix to obtain a target network model; the target network model is used for analyzing the to-be-tested parameters of the target network and determining the network state of the target network, and the network state comprises a normal communication state or a network congestion state. According to the embodiment of th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118075204A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Model training method, network congestion prediction method, equipment and medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20ZENAN&rft.date=2024-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118075204A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |