Power generation amount and power consumption abnormity prediction method based on energy big data
The invention discloses a generating capacity and electricity consumption abnormity prediction method based on energy big data, and the method comprises the steps: calculating a wind power generation power prediction value through wind power generation big data and a power conversion relation of a w...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WU JUNYING ZHANG PENGFEI PENG JIAO WANG YUZHEN CHANG YONGJUAN XU XING LU YANYAN JIANG DAN HE YUE CHEN XI LI TAO |
description | The invention discloses a generating capacity and electricity consumption abnormity prediction method based on energy big data, and the method comprises the steps: calculating a wind power generation power prediction value through wind power generation big data and a power conversion relation of a wind generating set, and calculating photovoltaic power generation power through photovoltaic power generation big data, realizing power grid power flow certainty prediction and power grid power flow probability prediction according to the power flow calculation equation; and establishing a training set sample and a test set sample through a mathematical model of a support vector regression machine, determining a support vector machine objective function, solving an optimal solution, obtaining a regression decision function, and obtaining a power grid load prediction result. The method can provide more bases for power grid operation risk management, and has high theoretical value and practical significance.
本发明公开了一种 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118070961A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118070961A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118070961A3</originalsourceid><addsrcrecordid>eNrjZEgKyC9PLVJIT81LLUosyczPU0jMzS_NK1FIzEtRKADLJefnFZfmFkAkk_Lyi3IzSyoVCopSUzKTwYK5qSUZ-SkKSYnFqSkKQD7IrPRKhaTMdIWUxJJEHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmAzUUBLv7GdoaGFgbmBpZuhoTIwaAK5uPpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power generation amount and power consumption abnormity prediction method based on energy big data</title><source>esp@cenet</source><creator>WU JUNYING ; ZHANG PENGFEI ; PENG JIAO ; WANG YUZHEN ; CHANG YONGJUAN ; XU XING ; LU YANYAN ; JIANG DAN ; HE YUE ; CHEN XI ; LI TAO</creator><creatorcontrib>WU JUNYING ; ZHANG PENGFEI ; PENG JIAO ; WANG YUZHEN ; CHANG YONGJUAN ; XU XING ; LU YANYAN ; JIANG DAN ; HE YUE ; CHEN XI ; LI TAO</creatorcontrib><description>The invention discloses a generating capacity and electricity consumption abnormity prediction method based on energy big data, and the method comprises the steps: calculating a wind power generation power prediction value through wind power generation big data and a power conversion relation of a wind generating set, and calculating photovoltaic power generation power through photovoltaic power generation big data, realizing power grid power flow certainty prediction and power grid power flow probability prediction according to the power flow calculation equation; and establishing a training set sample and a test set sample through a mathematical model of a support vector regression machine, determining a support vector machine objective function, solving an optimal solution, obtaining a regression decision function, and obtaining a power grid load prediction result. The method can provide more bases for power grid operation risk management, and has high theoretical value and practical significance.
本发明公开了一种</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240524&DB=EPODOC&CC=CN&NR=118070961A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240524&DB=EPODOC&CC=CN&NR=118070961A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU JUNYING</creatorcontrib><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>PENG JIAO</creatorcontrib><creatorcontrib>WANG YUZHEN</creatorcontrib><creatorcontrib>CHANG YONGJUAN</creatorcontrib><creatorcontrib>XU XING</creatorcontrib><creatorcontrib>LU YANYAN</creatorcontrib><creatorcontrib>JIANG DAN</creatorcontrib><creatorcontrib>HE YUE</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Power generation amount and power consumption abnormity prediction method based on energy big data</title><description>The invention discloses a generating capacity and electricity consumption abnormity prediction method based on energy big data, and the method comprises the steps: calculating a wind power generation power prediction value through wind power generation big data and a power conversion relation of a wind generating set, and calculating photovoltaic power generation power through photovoltaic power generation big data, realizing power grid power flow certainty prediction and power grid power flow probability prediction according to the power flow calculation equation; and establishing a training set sample and a test set sample through a mathematical model of a support vector regression machine, determining a support vector machine objective function, solving an optimal solution, obtaining a regression decision function, and obtaining a power grid load prediction result. The method can provide more bases for power grid operation risk management, and has high theoretical value and practical significance.
本发明公开了一种</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEgKyC9PLVJIT81LLUosyczPU0jMzS_NK1FIzEtRKADLJefnFZfmFkAkk_Lyi3IzSyoVCopSUzKTwYK5qSUZ-SkKSYnFqSkKQD7IrPRKhaTMdIWUxJJEHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmAzUUBLv7GdoaGFgbmBpZuhoTIwaAK5uPpA</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>WU JUNYING</creator><creator>ZHANG PENGFEI</creator><creator>PENG JIAO</creator><creator>WANG YUZHEN</creator><creator>CHANG YONGJUAN</creator><creator>XU XING</creator><creator>LU YANYAN</creator><creator>JIANG DAN</creator><creator>HE YUE</creator><creator>CHEN XI</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20240524</creationdate><title>Power generation amount and power consumption abnormity prediction method based on energy big data</title><author>WU JUNYING ; ZHANG PENGFEI ; PENG JIAO ; WANG YUZHEN ; CHANG YONGJUAN ; XU XING ; LU YANYAN ; JIANG DAN ; HE YUE ; CHEN XI ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118070961A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WU JUNYING</creatorcontrib><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>PENG JIAO</creatorcontrib><creatorcontrib>WANG YUZHEN</creatorcontrib><creatorcontrib>CHANG YONGJUAN</creatorcontrib><creatorcontrib>XU XING</creatorcontrib><creatorcontrib>LU YANYAN</creatorcontrib><creatorcontrib>JIANG DAN</creatorcontrib><creatorcontrib>HE YUE</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU JUNYING</au><au>ZHANG PENGFEI</au><au>PENG JIAO</au><au>WANG YUZHEN</au><au>CHANG YONGJUAN</au><au>XU XING</au><au>LU YANYAN</au><au>JIANG DAN</au><au>HE YUE</au><au>CHEN XI</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power generation amount and power consumption abnormity prediction method based on energy big data</title><date>2024-05-24</date><risdate>2024</risdate><abstract>The invention discloses a generating capacity and electricity consumption abnormity prediction method based on energy big data, and the method comprises the steps: calculating a wind power generation power prediction value through wind power generation big data and a power conversion relation of a wind generating set, and calculating photovoltaic power generation power through photovoltaic power generation big data, realizing power grid power flow certainty prediction and power grid power flow probability prediction according to the power flow calculation equation; and establishing a training set sample and a test set sample through a mathematical model of a support vector regression machine, determining a support vector machine objective function, solving an optimal solution, obtaining a regression decision function, and obtaining a power grid load prediction result. The method can provide more bases for power grid operation risk management, and has high theoretical value and practical significance.
本发明公开了一种</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118070961A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Power generation amount and power consumption abnormity prediction method based on energy big data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20JUNYING&rft.date=2024-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118070961A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |