Fan spatio-temporal data anomaly detection method based on diffusion model

The invention relates to a fan spatio-temporal data anomaly detection method based on a diffusion model, and the method comprises the following steps: carrying out the correlation analysis of collected SCADA time series data of a wind turbine generator, and dividing the data into a w * w matrix thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FENG HUAHUA, WANG LINFA, OH CHANG-HYUNG, ZHAO LEI, ZHOU ZHIDA, LIN TAO, CHEN MEIRUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FENG HUAHUA
WANG LINFA
OH CHANG-HYUNG
ZHAO LEI
ZHOU ZHIDA
LIN TAO
CHEN MEIRUN
description The invention relates to a fan spatio-temporal data anomaly detection method based on a diffusion model, and the method comprises the following steps: carrying out the correlation analysis of collected SCADA time series data of a wind turbine generator, and dividing the data into a w * w matrix through a sliding window mode; a GRUfusion model is constructed, the GRUfusion model comprises a self-attention mechanism module, a GRU module and a diffusion model, the w * w matrix is input into the GRU module to obtain time features, a transrank matrix of the w * w matrix is input into the self-attention mechanism module to obtain space features, the time features and the space features are subjected to feature data splicing through multi-channel fusion and then enter the diffusion model, and the time features and the space features enter the diffusion model. And outputting a prediction error by a diffusion model, and then carrying out anomaly judgment. The method is higher in accuracy and more effective in data spa
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118051857A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118051857A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118051857A3</originalsourceid><addsrcrecordid>eNrjZPByS8xTKC5ILMnM1y1JzS3IL0rMUUhJLElUSMzLz03MqVRISS1JTQZK5ynkppZk5KcoJCUWp6YoAPkpmWlppcVgmfyU1BweBta0xJziVF4ozc2g6OYa4uyhm1qQH58KtCM5NS-1JN7Zz9DQwsDU0MLU3NGYGDUAGyo1Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fan spatio-temporal data anomaly detection method based on diffusion model</title><source>esp@cenet</source><creator>FENG HUAHUA ; WANG LINFA ; OH CHANG-HYUNG ; ZHAO LEI ; ZHOU ZHIDA ; LIN TAO ; CHEN MEIRUN</creator><creatorcontrib>FENG HUAHUA ; WANG LINFA ; OH CHANG-HYUNG ; ZHAO LEI ; ZHOU ZHIDA ; LIN TAO ; CHEN MEIRUN</creatorcontrib><description>The invention relates to a fan spatio-temporal data anomaly detection method based on a diffusion model, and the method comprises the following steps: carrying out the correlation analysis of collected SCADA time series data of a wind turbine generator, and dividing the data into a w * w matrix through a sliding window mode; a GRUfusion model is constructed, the GRUfusion model comprises a self-attention mechanism module, a GRU module and a diffusion model, the w * w matrix is input into the GRU module to obtain time features, a transrank matrix of the w * w matrix is input into the self-attention mechanism module to obtain space features, the time features and the space features are subjected to feature data splicing through multi-channel fusion and then enter the diffusion model, and the time features and the space features enter the diffusion model. And outputting a prediction error by a diffusion model, and then carrying out anomaly judgment. The method is higher in accuracy and more effective in data spa</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240517&amp;DB=EPODOC&amp;CC=CN&amp;NR=118051857A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240517&amp;DB=EPODOC&amp;CC=CN&amp;NR=118051857A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FENG HUAHUA</creatorcontrib><creatorcontrib>WANG LINFA</creatorcontrib><creatorcontrib>OH CHANG-HYUNG</creatorcontrib><creatorcontrib>ZHAO LEI</creatorcontrib><creatorcontrib>ZHOU ZHIDA</creatorcontrib><creatorcontrib>LIN TAO</creatorcontrib><creatorcontrib>CHEN MEIRUN</creatorcontrib><title>Fan spatio-temporal data anomaly detection method based on diffusion model</title><description>The invention relates to a fan spatio-temporal data anomaly detection method based on a diffusion model, and the method comprises the following steps: carrying out the correlation analysis of collected SCADA time series data of a wind turbine generator, and dividing the data into a w * w matrix through a sliding window mode; a GRUfusion model is constructed, the GRUfusion model comprises a self-attention mechanism module, a GRU module and a diffusion model, the w * w matrix is input into the GRU module to obtain time features, a transrank matrix of the w * w matrix is input into the self-attention mechanism module to obtain space features, the time features and the space features are subjected to feature data splicing through multi-channel fusion and then enter the diffusion model, and the time features and the space features enter the diffusion model. And outputting a prediction error by a diffusion model, and then carrying out anomaly judgment. The method is higher in accuracy and more effective in data spa</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPByS8xTKC5ILMnM1y1JzS3IL0rMUUhJLElUSMzLz03MqVRISS1JTQZK5ynkppZk5KcoJCUWp6YoAPkpmWlppcVgmfyU1BweBta0xJziVF4ozc2g6OYa4uyhm1qQH58KtCM5NS-1JN7Zz9DQwsDU0MLU3NGYGDUAGyo1Dg</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>FENG HUAHUA</creator><creator>WANG LINFA</creator><creator>OH CHANG-HYUNG</creator><creator>ZHAO LEI</creator><creator>ZHOU ZHIDA</creator><creator>LIN TAO</creator><creator>CHEN MEIRUN</creator><scope>EVB</scope></search><sort><creationdate>20240517</creationdate><title>Fan spatio-temporal data anomaly detection method based on diffusion model</title><author>FENG HUAHUA ; WANG LINFA ; OH CHANG-HYUNG ; ZHAO LEI ; ZHOU ZHIDA ; LIN TAO ; CHEN MEIRUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118051857A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FENG HUAHUA</creatorcontrib><creatorcontrib>WANG LINFA</creatorcontrib><creatorcontrib>OH CHANG-HYUNG</creatorcontrib><creatorcontrib>ZHAO LEI</creatorcontrib><creatorcontrib>ZHOU ZHIDA</creatorcontrib><creatorcontrib>LIN TAO</creatorcontrib><creatorcontrib>CHEN MEIRUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FENG HUAHUA</au><au>WANG LINFA</au><au>OH CHANG-HYUNG</au><au>ZHAO LEI</au><au>ZHOU ZHIDA</au><au>LIN TAO</au><au>CHEN MEIRUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fan spatio-temporal data anomaly detection method based on diffusion model</title><date>2024-05-17</date><risdate>2024</risdate><abstract>The invention relates to a fan spatio-temporal data anomaly detection method based on a diffusion model, and the method comprises the following steps: carrying out the correlation analysis of collected SCADA time series data of a wind turbine generator, and dividing the data into a w * w matrix through a sliding window mode; a GRUfusion model is constructed, the GRUfusion model comprises a self-attention mechanism module, a GRU module and a diffusion model, the w * w matrix is input into the GRU module to obtain time features, a transrank matrix of the w * w matrix is input into the self-attention mechanism module to obtain space features, the time features and the space features are subjected to feature data splicing through multi-channel fusion and then enter the diffusion model, and the time features and the space features enter the diffusion model. And outputting a prediction error by a diffusion model, and then carrying out anomaly judgment. The method is higher in accuracy and more effective in data spa</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118051857A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Fan spatio-temporal data anomaly detection method based on diffusion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FENG%20HUAHUA&rft.date=2024-05-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118051857A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true