Automatic driving sanitation vehicle target detection model

An automatic driving sanitation vehicle target detection model belongs to the technical field of target detection, and comprises a direction sensitive attention sub-network embedded in an original target detection model, and the original target detection model processes image data through an origina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO QIXIANG, GAO CHONGZHI, HU BOLUN, ZHAO JINBO, DAI YIPENG, YU ZIKANG, HAN XINGLONG, HE WEI, CHEN HUI, YAN MENG, QU ZIJUN, LI NEN, OUYANG CHENYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO QIXIANG
GAO CHONGZHI
HU BOLUN
ZHAO JINBO
DAI YIPENG
YU ZIKANG
HAN XINGLONG
HE WEI
CHEN HUI
YAN MENG
QU ZIJUN
LI NEN
OUYANG CHENYU
description An automatic driving sanitation vehicle target detection model belongs to the technical field of target detection, and comprises a direction sensitive attention sub-network embedded in an original target detection model, and the original target detection model processes image data through an original convolutional layer thereof to obtain a plurality of original feature maps; the direction sensitive attention sub-network carries out direction feature extraction on the plurality of original feature maps through a direction convolutional layer of the direction sensitive attention sub-network to obtain weight coefficients representing a plurality of set directions in each original feature map; and the original target detection model performs target detection according to the plurality of original feature maps and the corresponding weight parameters to obtain a target detection result. According to the target detection method and device, the direction sensitive attention sub-network can be used for replacing a par
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118038390A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118038390A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118038390A3</originalsourceid><addsrcrecordid>eNrjZLB2LC3Jz00syUxWSCnKLMvMS1coTszLLAGK5OcplKVmZCbnpCqUJBalp5YopKSWpCaDJXLzU1JzeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFgbGFsaWBozExagDvQS_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic driving sanitation vehicle target detection model</title><source>esp@cenet</source><creator>GUO QIXIANG ; GAO CHONGZHI ; HU BOLUN ; ZHAO JINBO ; DAI YIPENG ; YU ZIKANG ; HAN XINGLONG ; HE WEI ; CHEN HUI ; YAN MENG ; QU ZIJUN ; LI NEN ; OUYANG CHENYU</creator><creatorcontrib>GUO QIXIANG ; GAO CHONGZHI ; HU BOLUN ; ZHAO JINBO ; DAI YIPENG ; YU ZIKANG ; HAN XINGLONG ; HE WEI ; CHEN HUI ; YAN MENG ; QU ZIJUN ; LI NEN ; OUYANG CHENYU</creatorcontrib><description>An automatic driving sanitation vehicle target detection model belongs to the technical field of target detection, and comprises a direction sensitive attention sub-network embedded in an original target detection model, and the original target detection model processes image data through an original convolutional layer thereof to obtain a plurality of original feature maps; the direction sensitive attention sub-network carries out direction feature extraction on the plurality of original feature maps through a direction convolutional layer of the direction sensitive attention sub-network to obtain weight coefficients representing a plurality of set directions in each original feature map; and the original target detection model performs target detection according to the plurality of original feature maps and the corresponding weight parameters to obtain a target detection result. According to the target detection method and device, the direction sensitive attention sub-network can be used for replacing a par</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240514&amp;DB=EPODOC&amp;CC=CN&amp;NR=118038390A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240514&amp;DB=EPODOC&amp;CC=CN&amp;NR=118038390A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO QIXIANG</creatorcontrib><creatorcontrib>GAO CHONGZHI</creatorcontrib><creatorcontrib>HU BOLUN</creatorcontrib><creatorcontrib>ZHAO JINBO</creatorcontrib><creatorcontrib>DAI YIPENG</creatorcontrib><creatorcontrib>YU ZIKANG</creatorcontrib><creatorcontrib>HAN XINGLONG</creatorcontrib><creatorcontrib>HE WEI</creatorcontrib><creatorcontrib>CHEN HUI</creatorcontrib><creatorcontrib>YAN MENG</creatorcontrib><creatorcontrib>QU ZIJUN</creatorcontrib><creatorcontrib>LI NEN</creatorcontrib><creatorcontrib>OUYANG CHENYU</creatorcontrib><title>Automatic driving sanitation vehicle target detection model</title><description>An automatic driving sanitation vehicle target detection model belongs to the technical field of target detection, and comprises a direction sensitive attention sub-network embedded in an original target detection model, and the original target detection model processes image data through an original convolutional layer thereof to obtain a plurality of original feature maps; the direction sensitive attention sub-network carries out direction feature extraction on the plurality of original feature maps through a direction convolutional layer of the direction sensitive attention sub-network to obtain weight coefficients representing a plurality of set directions in each original feature map; and the original target detection model performs target detection according to the plurality of original feature maps and the corresponding weight parameters to obtain a target detection result. According to the target detection method and device, the direction sensitive attention sub-network can be used for replacing a par</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB2LC3Jz00syUxWSCnKLMvMS1coTszLLAGK5OcplKVmZCbnpCqUJBalp5YopKSWpCaDJXLzU1JzeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFgbGFsaWBozExagDvQS_v</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>GUO QIXIANG</creator><creator>GAO CHONGZHI</creator><creator>HU BOLUN</creator><creator>ZHAO JINBO</creator><creator>DAI YIPENG</creator><creator>YU ZIKANG</creator><creator>HAN XINGLONG</creator><creator>HE WEI</creator><creator>CHEN HUI</creator><creator>YAN MENG</creator><creator>QU ZIJUN</creator><creator>LI NEN</creator><creator>OUYANG CHENYU</creator><scope>EVB</scope></search><sort><creationdate>20240514</creationdate><title>Automatic driving sanitation vehicle target detection model</title><author>GUO QIXIANG ; GAO CHONGZHI ; HU BOLUN ; ZHAO JINBO ; DAI YIPENG ; YU ZIKANG ; HAN XINGLONG ; HE WEI ; CHEN HUI ; YAN MENG ; QU ZIJUN ; LI NEN ; OUYANG CHENYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118038390A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO QIXIANG</creatorcontrib><creatorcontrib>GAO CHONGZHI</creatorcontrib><creatorcontrib>HU BOLUN</creatorcontrib><creatorcontrib>ZHAO JINBO</creatorcontrib><creatorcontrib>DAI YIPENG</creatorcontrib><creatorcontrib>YU ZIKANG</creatorcontrib><creatorcontrib>HAN XINGLONG</creatorcontrib><creatorcontrib>HE WEI</creatorcontrib><creatorcontrib>CHEN HUI</creatorcontrib><creatorcontrib>YAN MENG</creatorcontrib><creatorcontrib>QU ZIJUN</creatorcontrib><creatorcontrib>LI NEN</creatorcontrib><creatorcontrib>OUYANG CHENYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO QIXIANG</au><au>GAO CHONGZHI</au><au>HU BOLUN</au><au>ZHAO JINBO</au><au>DAI YIPENG</au><au>YU ZIKANG</au><au>HAN XINGLONG</au><au>HE WEI</au><au>CHEN HUI</au><au>YAN MENG</au><au>QU ZIJUN</au><au>LI NEN</au><au>OUYANG CHENYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic driving sanitation vehicle target detection model</title><date>2024-05-14</date><risdate>2024</risdate><abstract>An automatic driving sanitation vehicle target detection model belongs to the technical field of target detection, and comprises a direction sensitive attention sub-network embedded in an original target detection model, and the original target detection model processes image data through an original convolutional layer thereof to obtain a plurality of original feature maps; the direction sensitive attention sub-network carries out direction feature extraction on the plurality of original feature maps through a direction convolutional layer of the direction sensitive attention sub-network to obtain weight coefficients representing a plurality of set directions in each original feature map; and the original target detection model performs target detection according to the plurality of original feature maps and the corresponding weight parameters to obtain a target detection result. According to the target detection method and device, the direction sensitive attention sub-network can be used for replacing a par</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118038390A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Automatic driving sanitation vehicle target detection model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20QIXIANG&rft.date=2024-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118038390A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true