Mechanical arm error compensation method based on improved RBF neural network

The invention belongs to the technical field of mechanical arm precision control, and relates to a mechanical arm error compensation method based on an improved RBF neural network, which mainly comprises two parts of geometric error identification based on a preprocessing sequence quadratic programm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG JIN, FANG ZIYANG, LU GUODONG, ZHU JUNJIE, ZHENG WENXIN, LI XIAOFEI, ZHANG HAIYUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG JIN
FANG ZIYANG
LU GUODONG
ZHU JUNJIE
ZHENG WENXIN
LI XIAOFEI
ZHANG HAIYUN
description The invention belongs to the technical field of mechanical arm precision control, and relates to a mechanical arm error compensation method based on an improved RBF neural network, which mainly comprises two parts of geometric error identification based on a preprocessing sequence quadratic programming algorithm and non-geometric error identification based on a particle swarm optimization RBF neural network. In a geometric error identification compensation stage, a mechanical arm high-dimensional solution space is reduced to a non-convex low-dimensional subspace through preprocessing, and then sequential quadratic programming is designed to solve geometric compensation data; in a non-geometric error identification compensation stage, designing an RBF neural network algorithm based on particle swarm optimization to adaptively predict non-geometric error compensation data; and the positioning error of the mechanical arm is comprehensively compensated by combining geometric and non-geometric error compensation d
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118003332A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118003332A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118003332A3</originalsourceid><addsrcrecordid>eNrjZPD1TU3OSMzLTE7MUUgsylVILSrKL1JIzs8tSM0rTizJzM9TyE0tychPUUhKLE5NUQDyM3MLivLLgOwgJzeFvNTSIqDWvNSS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhhYGBsbGzkaEyMGgDFqTXr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mechanical arm error compensation method based on improved RBF neural network</title><source>esp@cenet</source><creator>WANG JIN ; FANG ZIYANG ; LU GUODONG ; ZHU JUNJIE ; ZHENG WENXIN ; LI XIAOFEI ; ZHANG HAIYUN</creator><creatorcontrib>WANG JIN ; FANG ZIYANG ; LU GUODONG ; ZHU JUNJIE ; ZHENG WENXIN ; LI XIAOFEI ; ZHANG HAIYUN</creatorcontrib><description>The invention belongs to the technical field of mechanical arm precision control, and relates to a mechanical arm error compensation method based on an improved RBF neural network, which mainly comprises two parts of geometric error identification based on a preprocessing sequence quadratic programming algorithm and non-geometric error identification based on a particle swarm optimization RBF neural network. In a geometric error identification compensation stage, a mechanical arm high-dimensional solution space is reduced to a non-convex low-dimensional subspace through preprocessing, and then sequential quadratic programming is designed to solve geometric compensation data; in a non-geometric error identification compensation stage, designing an RBF neural network algorithm based on particle swarm optimization to adaptively predict non-geometric error compensation data; and the positioning error of the mechanical arm is comprehensively compensated by combining geometric and non-geometric error compensation d</description><language>chi ; eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240510&amp;DB=EPODOC&amp;CC=CN&amp;NR=118003332A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240510&amp;DB=EPODOC&amp;CC=CN&amp;NR=118003332A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG JIN</creatorcontrib><creatorcontrib>FANG ZIYANG</creatorcontrib><creatorcontrib>LU GUODONG</creatorcontrib><creatorcontrib>ZHU JUNJIE</creatorcontrib><creatorcontrib>ZHENG WENXIN</creatorcontrib><creatorcontrib>LI XIAOFEI</creatorcontrib><creatorcontrib>ZHANG HAIYUN</creatorcontrib><title>Mechanical arm error compensation method based on improved RBF neural network</title><description>The invention belongs to the technical field of mechanical arm precision control, and relates to a mechanical arm error compensation method based on an improved RBF neural network, which mainly comprises two parts of geometric error identification based on a preprocessing sequence quadratic programming algorithm and non-geometric error identification based on a particle swarm optimization RBF neural network. In a geometric error identification compensation stage, a mechanical arm high-dimensional solution space is reduced to a non-convex low-dimensional subspace through preprocessing, and then sequential quadratic programming is designed to solve geometric compensation data; in a non-geometric error identification compensation stage, designing an RBF neural network algorithm based on particle swarm optimization to adaptively predict non-geometric error compensation data; and the positioning error of the mechanical arm is comprehensively compensated by combining geometric and non-geometric error compensation d</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD1TU3OSMzLTE7MUUgsylVILSrKL1JIzs8tSM0rTizJzM9TyE0tychPUUhKLE5NUQDyM3MLivLLgOwgJzeFvNTSIqDWvNSS8vyibB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicClQZ7-xnaGhhYGBsbGzkaEyMGgDFqTXr</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>WANG JIN</creator><creator>FANG ZIYANG</creator><creator>LU GUODONG</creator><creator>ZHU JUNJIE</creator><creator>ZHENG WENXIN</creator><creator>LI XIAOFEI</creator><creator>ZHANG HAIYUN</creator><scope>EVB</scope></search><sort><creationdate>20240510</creationdate><title>Mechanical arm error compensation method based on improved RBF neural network</title><author>WANG JIN ; FANG ZIYANG ; LU GUODONG ; ZHU JUNJIE ; ZHENG WENXIN ; LI XIAOFEI ; ZHANG HAIYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118003332A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG JIN</creatorcontrib><creatorcontrib>FANG ZIYANG</creatorcontrib><creatorcontrib>LU GUODONG</creatorcontrib><creatorcontrib>ZHU JUNJIE</creatorcontrib><creatorcontrib>ZHENG WENXIN</creatorcontrib><creatorcontrib>LI XIAOFEI</creatorcontrib><creatorcontrib>ZHANG HAIYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG JIN</au><au>FANG ZIYANG</au><au>LU GUODONG</au><au>ZHU JUNJIE</au><au>ZHENG WENXIN</au><au>LI XIAOFEI</au><au>ZHANG HAIYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mechanical arm error compensation method based on improved RBF neural network</title><date>2024-05-10</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of mechanical arm precision control, and relates to a mechanical arm error compensation method based on an improved RBF neural network, which mainly comprises two parts of geometric error identification based on a preprocessing sequence quadratic programming algorithm and non-geometric error identification based on a particle swarm optimization RBF neural network. In a geometric error identification compensation stage, a mechanical arm high-dimensional solution space is reduced to a non-convex low-dimensional subspace through preprocessing, and then sequential quadratic programming is designed to solve geometric compensation data; in a non-geometric error identification compensation stage, designing an RBF neural network algorithm based on particle swarm optimization to adaptively predict non-geometric error compensation data; and the positioning error of the mechanical arm is comprehensively compensated by combining geometric and non-geometric error compensation d</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118003332A
source esp@cenet
subjects CHAMBERS PROVIDED WITH MANIPULATION DEVICES
HAND TOOLS
MANIPULATORS
PERFORMING OPERATIONS
PORTABLE POWER-DRIVEN TOOLS
TRANSPORTING
title Mechanical arm error compensation method based on improved RBF neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20JIN&rft.date=2024-05-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118003332A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true