Double-branch low-illumination image enhancement method based on Retinex theory
The invention relates to the field of image enhancement, in particular to a double-branch low-illumination image enhancement method based on the Retinex theory, which comprises the following steps of: S1, acquiring an illumination component and a reflection component by using a decomposition network...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HAN YING YANG JIANBAI SHI YUHANG YIN MOHAN JI WEIDONG |
description | The invention relates to the field of image enhancement, in particular to a double-branch low-illumination image enhancement method based on the Retinex theory, which comprises the following steps of: S1, acquiring an illumination component and a reflection component by using a decomposition network based on the Retinex theory, and denoising the reflection component and enhancing the illumination through an enhancement network; s2, carrying out initialization feature extraction on the input low-illumination image through parallel connection of hole convolution with different expansion rates, and carrying out deeper feature extraction on the initialized image through an enhancement unit in an iterative learning module and a U-Net network; and S3, obtaining a corrected illumination image through a fusion unit, and fusing the obtained illumination image and the reflection component after three times of iterative learning to obtain a final enhanced image, the method provided by the invention effectively improves |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117994155A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117994155A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117994155A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEuDqK-w_UBMgQt0lGq4qQg7iVpf00gubc0Kerb28EHcDrD-ebF9SCjDVB2MNw6CvJSPoQxejbZC5OP5gkCu2kjgjNFZCcdWZPQ0SRuyJ7xpuwgw2dZzB4mJKx-XRTr0_FenxV6aZB604KRm_qi9a6qtros95t_zBd0UDc0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Double-branch low-illumination image enhancement method based on Retinex theory</title><source>esp@cenet</source><creator>HAN YING ; YANG JIANBAI ; SHI YUHANG ; YIN MOHAN ; JI WEIDONG</creator><creatorcontrib>HAN YING ; YANG JIANBAI ; SHI YUHANG ; YIN MOHAN ; JI WEIDONG</creatorcontrib><description>The invention relates to the field of image enhancement, in particular to a double-branch low-illumination image enhancement method based on the Retinex theory, which comprises the following steps of: S1, acquiring an illumination component and a reflection component by using a decomposition network based on the Retinex theory, and denoising the reflection component and enhancing the illumination through an enhancement network; s2, carrying out initialization feature extraction on the input low-illumination image through parallel connection of hole convolution with different expansion rates, and carrying out deeper feature extraction on the initialized image through an enhancement unit in an iterative learning module and a U-Net network; and S3, obtaining a corrected illumination image through a fusion unit, and fusing the obtained illumination image and the reflection component after three times of iterative learning to obtain a final enhanced image, the method provided by the invention effectively improves</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240507&DB=EPODOC&CC=CN&NR=117994155A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240507&DB=EPODOC&CC=CN&NR=117994155A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAN YING</creatorcontrib><creatorcontrib>YANG JIANBAI</creatorcontrib><creatorcontrib>SHI YUHANG</creatorcontrib><creatorcontrib>YIN MOHAN</creatorcontrib><creatorcontrib>JI WEIDONG</creatorcontrib><title>Double-branch low-illumination image enhancement method based on Retinex theory</title><description>The invention relates to the field of image enhancement, in particular to a double-branch low-illumination image enhancement method based on the Retinex theory, which comprises the following steps of: S1, acquiring an illumination component and a reflection component by using a decomposition network based on the Retinex theory, and denoising the reflection component and enhancing the illumination through an enhancement network; s2, carrying out initialization feature extraction on the input low-illumination image through parallel connection of hole convolution with different expansion rates, and carrying out deeper feature extraction on the initialized image through an enhancement unit in an iterative learning module and a U-Net network; and S3, obtaining a corrected illumination image through a fusion unit, and fusing the obtained illumination image and the reflection component after three times of iterative learning to obtain a final enhanced image, the method provided by the invention effectively improves</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEuDqK-w_UBMgQt0lGq4qQg7iVpf00gubc0Kerb28EHcDrD-ebF9SCjDVB2MNw6CvJSPoQxejbZC5OP5gkCu2kjgjNFZCcdWZPQ0SRuyJ7xpuwgw2dZzB4mJKx-XRTr0_FenxV6aZB604KRm_qi9a6qtros95t_zBd0UDc0</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>HAN YING</creator><creator>YANG JIANBAI</creator><creator>SHI YUHANG</creator><creator>YIN MOHAN</creator><creator>JI WEIDONG</creator><scope>EVB</scope></search><sort><creationdate>20240507</creationdate><title>Double-branch low-illumination image enhancement method based on Retinex theory</title><author>HAN YING ; YANG JIANBAI ; SHI YUHANG ; YIN MOHAN ; JI WEIDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117994155A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HAN YING</creatorcontrib><creatorcontrib>YANG JIANBAI</creatorcontrib><creatorcontrib>SHI YUHANG</creatorcontrib><creatorcontrib>YIN MOHAN</creatorcontrib><creatorcontrib>JI WEIDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAN YING</au><au>YANG JIANBAI</au><au>SHI YUHANG</au><au>YIN MOHAN</au><au>JI WEIDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Double-branch low-illumination image enhancement method based on Retinex theory</title><date>2024-05-07</date><risdate>2024</risdate><abstract>The invention relates to the field of image enhancement, in particular to a double-branch low-illumination image enhancement method based on the Retinex theory, which comprises the following steps of: S1, acquiring an illumination component and a reflection component by using a decomposition network based on the Retinex theory, and denoising the reflection component and enhancing the illumination through an enhancement network; s2, carrying out initialization feature extraction on the input low-illumination image through parallel connection of hole convolution with different expansion rates, and carrying out deeper feature extraction on the initialized image through an enhancement unit in an iterative learning module and a U-Net network; and S3, obtaining a corrected illumination image through a fusion unit, and fusing the obtained illumination image and the reflection component after three times of iterative learning to obtain a final enhanced image, the method provided by the invention effectively improves</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117994155A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Double-branch low-illumination image enhancement method based on Retinex theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAN%20YING&rft.date=2024-05-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117994155A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |