AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets

A system for generating a task schedule using an electronic device, the system comprising: a processor comprising a neural network; a memory coupled to the processor; a scheduler coupled to the processor, the scheduler configured to: receive the following: a total work database configured to contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MADAVARAM KARTHIK, KUMAR, GOPAL, UTTAM, BODLA KARTHIK KUMAR, KIRAN, TAHIR, RAMA, U, MEGHANI KAPIL KUMAR, VERMA JANU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MADAVARAM KARTHIK
KUMAR, GOPAL, UTTAM
BODLA KARTHIK KUMAR
KIRAN, TAHIR, RAMA, U
MEGHANI KAPIL KUMAR
VERMA JANU
description A system for generating a task schedule using an electronic device, the system comprising: a processor comprising a neural network; a memory coupled to the processor; a scheduler coupled to the processor, the scheduler configured to: receive the following: a total work database configured to contain entries representing work packets; a resource database configured to contain entries representing resources required to satisfy the entries in the work package; a constraint database configured to contain entries representing that constraints of entries in the work package are satisfied; and a scheduling target database configured to specify a primary target to be implemented by the optimal task scheduling; providing a trained reinforcement learning engine for optimizing task scheduling based on input from the database; and using the trained reinforcement learning engine to generate an optimal work package schedule to order the work packages, wherein the optimal work package schedule maximizes the one or more prim
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117980930A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117980930A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117980930A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYTyAkJBCU4agaGNlH4bNJFmy2Q0zs6Tx8KKoWFo9Hnz8y-ReXkAZrbe-A_QNYNQwoloDYnpqoiOGNvDnPdkYndrJEcyBB7BKo8BstQfpkakBJgmRDckr-NU_BUXuSGWdLFp0Qpv3rpLt6XirzjuaQk0yoSFPWlfXLNsXh7TI0zL_xzwASfxImQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets</title><source>esp@cenet</source><creator>MADAVARAM KARTHIK ; KUMAR, GOPAL, UTTAM ; BODLA KARTHIK KUMAR ; KIRAN, TAHIR, RAMA, U ; MEGHANI KAPIL KUMAR ; VERMA JANU</creator><creatorcontrib>MADAVARAM KARTHIK ; KUMAR, GOPAL, UTTAM ; BODLA KARTHIK KUMAR ; KIRAN, TAHIR, RAMA, U ; MEGHANI KAPIL KUMAR ; VERMA JANU</creatorcontrib><description>A system for generating a task schedule using an electronic device, the system comprising: a processor comprising a neural network; a memory coupled to the processor; a scheduler coupled to the processor, the scheduler configured to: receive the following: a total work database configured to contain entries representing work packets; a resource database configured to contain entries representing resources required to satisfy the entries in the work package; a constraint database configured to contain entries representing that constraints of entries in the work package are satisfied; and a scheduling target database configured to specify a primary target to be implemented by the optimal task scheduling; providing a trained reinforcement learning engine for optimizing task scheduling based on input from the database; and using the trained reinforcement learning engine to generate an optimal work package schedule to order the work packages, wherein the optimal work package schedule maximizes the one or more prim</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117980930A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117980930A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MADAVARAM KARTHIK</creatorcontrib><creatorcontrib>KUMAR, GOPAL, UTTAM</creatorcontrib><creatorcontrib>BODLA KARTHIK KUMAR</creatorcontrib><creatorcontrib>KIRAN, TAHIR, RAMA, U</creatorcontrib><creatorcontrib>MEGHANI KAPIL KUMAR</creatorcontrib><creatorcontrib>VERMA JANU</creatorcontrib><title>AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets</title><description>A system for generating a task schedule using an electronic device, the system comprising: a processor comprising a neural network; a memory coupled to the processor; a scheduler coupled to the processor, the scheduler configured to: receive the following: a total work database configured to contain entries representing work packets; a resource database configured to contain entries representing resources required to satisfy the entries in the work package; a constraint database configured to contain entries representing that constraints of entries in the work package are satisfied; and a scheduling target database configured to specify a primary target to be implemented by the optimal task scheduling; providing a trained reinforcement learning engine for optimizing task scheduling based on input from the database; and using the trained reinforcement learning engine to generate an optimal work package schedule to order the work packages, wherein the optimal work package schedule maximizes the one or more prim</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYTyAkJBCU4agaGNlH4bNJFmy2Q0zs6Tx8KKoWFo9Hnz8y-ReXkAZrbe-A_QNYNQwoloDYnpqoiOGNvDnPdkYndrJEcyBB7BKo8BstQfpkakBJgmRDckr-NU_BUXuSGWdLFp0Qpv3rpLt6XirzjuaQk0yoSFPWlfXLNsXh7TI0zL_xzwASfxImQ</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>MADAVARAM KARTHIK</creator><creator>KUMAR, GOPAL, UTTAM</creator><creator>BODLA KARTHIK KUMAR</creator><creator>KIRAN, TAHIR, RAMA, U</creator><creator>MEGHANI KAPIL KUMAR</creator><creator>VERMA JANU</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets</title><author>MADAVARAM KARTHIK ; KUMAR, GOPAL, UTTAM ; BODLA KARTHIK KUMAR ; KIRAN, TAHIR, RAMA, U ; MEGHANI KAPIL KUMAR ; VERMA JANU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117980930A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MADAVARAM KARTHIK</creatorcontrib><creatorcontrib>KUMAR, GOPAL, UTTAM</creatorcontrib><creatorcontrib>BODLA KARTHIK KUMAR</creatorcontrib><creatorcontrib>KIRAN, TAHIR, RAMA, U</creatorcontrib><creatorcontrib>MEGHANI KAPIL KUMAR</creatorcontrib><creatorcontrib>VERMA JANU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MADAVARAM KARTHIK</au><au>KUMAR, GOPAL, UTTAM</au><au>BODLA KARTHIK KUMAR</au><au>KIRAN, TAHIR, RAMA, U</au><au>MEGHANI KAPIL KUMAR</au><au>VERMA JANU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets</title><date>2024-05-03</date><risdate>2024</risdate><abstract>A system for generating a task schedule using an electronic device, the system comprising: a processor comprising a neural network; a memory coupled to the processor; a scheduler coupled to the processor, the scheduler configured to: receive the following: a total work database configured to contain entries representing work packets; a resource database configured to contain entries representing resources required to satisfy the entries in the work package; a constraint database configured to contain entries representing that constraints of entries in the work package are satisfied; and a scheduling target database configured to specify a primary target to be implemented by the optimal task scheduling; providing a trained reinforcement learning engine for optimizing task scheduling based on input from the database; and using the trained reinforcement learning engine to generate an optimal work package schedule to order the work packages, wherein the optimal work package schedule maximizes the one or more prim</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117980930A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title AI training and automatic scheduler for scheduling multiple work items with shared resources and multiple scheduling targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MADAVARAM%20KARTHIK&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117980930A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true