Mechanical drilling speed prediction method based on artificial intelligence
The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, per...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG QI YANG JUNWEI CHEN ZOUPING YAN SHUANG ZENG HUICHUAN ZENG LINGPING QING CHUN JIANG DONG RONG ZHUN SONG YONG ZHANG JIEWEI ZHANG HANG ZHANG YANG |
description | The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117973486A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117973486A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117973486A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBN1QIOAP5gEUURCBEkUgCqCij47zJjnJnC3b_xcueADVaEc7S3N_gGdSYfLWJfFedLI5As7GBCdcJKj9oMzB2Tfl6uumVGQUlhqJFtRqgjLWZjGSz9j8uDLb6-XV33aIYUCOxFCUoX82TXfq2v3xcG7_-XwBvlY2Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mechanical drilling speed prediction method based on artificial intelligence</title><source>esp@cenet</source><creator>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</creator><creatorcontrib>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</creatorcontrib><description>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240503&DB=EPODOC&CC=CN&NR=117973486A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240503&DB=EPODOC&CC=CN&NR=117973486A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>YANG JUNWEI</creatorcontrib><creatorcontrib>CHEN ZOUPING</creatorcontrib><creatorcontrib>YAN SHUANG</creatorcontrib><creatorcontrib>ZENG HUICHUAN</creatorcontrib><creatorcontrib>ZENG LINGPING</creatorcontrib><creatorcontrib>QING CHUN</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>RONG ZHUN</creatorcontrib><creatorcontrib>SONG YONG</creatorcontrib><creatorcontrib>ZHANG JIEWEI</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><title>Mechanical drilling speed prediction method based on artificial intelligence</title><description>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBN1QIOAP5gEUURCBEkUgCqCij47zJjnJnC3b_xcueADVaEc7S3N_gGdSYfLWJfFedLI5As7GBCdcJKj9oMzB2Tfl6uumVGQUlhqJFtRqgjLWZjGSz9j8uDLb6-XV33aIYUCOxFCUoX82TXfq2v3xcG7_-XwBvlY2Mw</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>ZHANG QI</creator><creator>YANG JUNWEI</creator><creator>CHEN ZOUPING</creator><creator>YAN SHUANG</creator><creator>ZENG HUICHUAN</creator><creator>ZENG LINGPING</creator><creator>QING CHUN</creator><creator>JIANG DONG</creator><creator>RONG ZHUN</creator><creator>SONG YONG</creator><creator>ZHANG JIEWEI</creator><creator>ZHANG HANG</creator><creator>ZHANG YANG</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Mechanical drilling speed prediction method based on artificial intelligence</title><author>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117973486A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>YANG JUNWEI</creatorcontrib><creatorcontrib>CHEN ZOUPING</creatorcontrib><creatorcontrib>YAN SHUANG</creatorcontrib><creatorcontrib>ZENG HUICHUAN</creatorcontrib><creatorcontrib>ZENG LINGPING</creatorcontrib><creatorcontrib>QING CHUN</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>RONG ZHUN</creatorcontrib><creatorcontrib>SONG YONG</creatorcontrib><creatorcontrib>ZHANG JIEWEI</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG QI</au><au>YANG JUNWEI</au><au>CHEN ZOUPING</au><au>YAN SHUANG</au><au>ZENG HUICHUAN</au><au>ZENG LINGPING</au><au>QING CHUN</au><au>JIANG DONG</au><au>RONG ZHUN</au><au>SONG YONG</au><au>ZHANG JIEWEI</au><au>ZHANG HANG</au><au>ZHANG YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mechanical drilling speed prediction method based on artificial intelligence</title><date>2024-05-03</date><risdate>2024</risdate><abstract>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117973486A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Mechanical drilling speed prediction method based on artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20QI&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117973486A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |