Mechanical drilling speed prediction method based on artificial intelligence

The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG QI, YANG JUNWEI, CHEN ZOUPING, YAN SHUANG, ZENG HUICHUAN, ZENG LINGPING, QING CHUN, JIANG DONG, RONG ZHUN, SONG YONG, ZHANG JIEWEI, ZHANG HANG, ZHANG YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG QI
YANG JUNWEI
CHEN ZOUPING
YAN SHUANG
ZENG HUICHUAN
ZENG LINGPING
QING CHUN
JIANG DONG
RONG ZHUN
SONG YONG
ZHANG JIEWEI
ZHANG HANG
ZHANG YANG
description The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117973486A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117973486A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117973486A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBN1QIOAP5gEUURCBEkUgCqCij47zJjnJnC3b_xcueADVaEc7S3N_gGdSYfLWJfFedLI5As7GBCdcJKj9oMzB2Tfl6uumVGQUlhqJFtRqgjLWZjGSz9j8uDLb6-XV33aIYUCOxFCUoX82TXfq2v3xcG7_-XwBvlY2Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mechanical drilling speed prediction method based on artificial intelligence</title><source>esp@cenet</source><creator>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</creator><creatorcontrib>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</creatorcontrib><description>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117973486A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117973486A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>YANG JUNWEI</creatorcontrib><creatorcontrib>CHEN ZOUPING</creatorcontrib><creatorcontrib>YAN SHUANG</creatorcontrib><creatorcontrib>ZENG HUICHUAN</creatorcontrib><creatorcontrib>ZENG LINGPING</creatorcontrib><creatorcontrib>QING CHUN</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>RONG ZHUN</creatorcontrib><creatorcontrib>SONG YONG</creatorcontrib><creatorcontrib>ZHANG JIEWEI</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><title>Mechanical drilling speed prediction method based on artificial intelligence</title><description>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBN1QIOAP5gEUURCBEkUgCqCij47zJjnJnC3b_xcueADVaEc7S3N_gGdSYfLWJfFedLI5As7GBCdcJKj9oMzB2Tfl6uumVGQUlhqJFtRqgjLWZjGSz9j8uDLb6-XV33aIYUCOxFCUoX82TXfq2v3xcG7_-XwBvlY2Mw</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>ZHANG QI</creator><creator>YANG JUNWEI</creator><creator>CHEN ZOUPING</creator><creator>YAN SHUANG</creator><creator>ZENG HUICHUAN</creator><creator>ZENG LINGPING</creator><creator>QING CHUN</creator><creator>JIANG DONG</creator><creator>RONG ZHUN</creator><creator>SONG YONG</creator><creator>ZHANG JIEWEI</creator><creator>ZHANG HANG</creator><creator>ZHANG YANG</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Mechanical drilling speed prediction method based on artificial intelligence</title><author>ZHANG QI ; YANG JUNWEI ; CHEN ZOUPING ; YAN SHUANG ; ZENG HUICHUAN ; ZENG LINGPING ; QING CHUN ; JIANG DONG ; RONG ZHUN ; SONG YONG ; ZHANG JIEWEI ; ZHANG HANG ; ZHANG YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117973486A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>YANG JUNWEI</creatorcontrib><creatorcontrib>CHEN ZOUPING</creatorcontrib><creatorcontrib>YAN SHUANG</creatorcontrib><creatorcontrib>ZENG HUICHUAN</creatorcontrib><creatorcontrib>ZENG LINGPING</creatorcontrib><creatorcontrib>QING CHUN</creatorcontrib><creatorcontrib>JIANG DONG</creatorcontrib><creatorcontrib>RONG ZHUN</creatorcontrib><creatorcontrib>SONG YONG</creatorcontrib><creatorcontrib>ZHANG JIEWEI</creatorcontrib><creatorcontrib>ZHANG HANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG QI</au><au>YANG JUNWEI</au><au>CHEN ZOUPING</au><au>YAN SHUANG</au><au>ZENG HUICHUAN</au><au>ZENG LINGPING</au><au>QING CHUN</au><au>JIANG DONG</au><au>RONG ZHUN</au><au>SONG YONG</au><au>ZHANG JIEWEI</au><au>ZHANG HANG</au><au>ZHANG YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mechanical drilling speed prediction method based on artificial intelligence</title><date>2024-05-03</date><risdate>2024</risdate><abstract>The invention discloses a mechanical drilling speed prediction method based on artificial intelligence, and relates to the technical field of drilling engineering. Comprising the following steps: acquiring stratum parameters and engineering parameters of an area where a drilling well is located, performing data preprocessing to obtain an initial data set, and performing correlation analysis on the initial data set by using a Pearson correlation coefficient algorithm; sorting the initial data set according to a correlation value between every two parameters, and screening out main control factors influencing the mechanical drilling speed; and the main control factors are input into a BP neural network for mechanical drilling speed prediction. According to the method, influence parameters are comprehensively considered, so that the mechanical drilling speed prediction model of the machine is more accurate and can better fit the field reality; a main control factor number set is screened out by performing correl</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117973486A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Mechanical drilling speed prediction method based on artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20QI&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117973486A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true