Training method of tunneling parameter prediction model based on incremental learning and related equipment

The invention provides a training method of a tunneling parameter prediction model based on incremental learning and related equipment. The tunneling parameter prediction precision of a tunneling machine of the model can be improved. The method comprises the steps that an initial tunneling parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU BIN, SHENG GUANGZU, YU HONGGAN, HUANG XING, SANG HAOMIN, DENG PENGHAI, WEN TIAN, LIU QUANSHENG, YANG TAIHUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU BIN
SHENG GUANGZU
YU HONGGAN
HUANG XING
SANG HAOMIN
DENG PENGHAI
WEN TIAN
LIU QUANSHENG
YANG TAIHUA
description The invention provides a training method of a tunneling parameter prediction model based on incremental learning and related equipment. The tunneling parameter prediction precision of a tunneling machine of the model can be improved. The method comprises the steps that an initial tunneling parameter prediction model is constructed based on a bidirectional long-short time memory network, the tunneling parameter prediction model based on incremental learning comprises an input layer, a first hidden layer, an output layer and N second hidden layers, and activation functions of the N second hidden layers are unsaturated activation functions; target input data is input into the initial tunneling parameter prediction model to obtain predicted tunneling parameters, and the target input data is any data in the standardized model input data set; optimizing a hyper-parameter combination of the initial tunneling parameter prediction model based on a quantum particle swarm algorithm, the predicted tunneling parameters an
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117972522A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117972522A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117972522A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYTyARVYkWEpQrKzSh3H3RRc3s-tkc38T8QBWD34-3rJ4NcpevDyoR35GR7GjPIogzC2x8tShlBTO2-yjUB8dAt15wKSFvFhFD8kcKID1e8biSBE4Twbv0acZrItFx2HA5rerYns5N_V1hxRbDIktBLmtb2VZHStzMOa0_8d8AC3vQg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training method of tunneling parameter prediction model based on incremental learning and related equipment</title><source>esp@cenet</source><creator>LIU BIN ; SHENG GUANGZU ; YU HONGGAN ; HUANG XING ; SANG HAOMIN ; DENG PENGHAI ; WEN TIAN ; LIU QUANSHENG ; YANG TAIHUA</creator><creatorcontrib>LIU BIN ; SHENG GUANGZU ; YU HONGGAN ; HUANG XING ; SANG HAOMIN ; DENG PENGHAI ; WEN TIAN ; LIU QUANSHENG ; YANG TAIHUA</creatorcontrib><description>The invention provides a training method of a tunneling parameter prediction model based on incremental learning and related equipment. The tunneling parameter prediction precision of a tunneling machine of the model can be improved. The method comprises the steps that an initial tunneling parameter prediction model is constructed based on a bidirectional long-short time memory network, the tunneling parameter prediction model based on incremental learning comprises an input layer, a first hidden layer, an output layer and N second hidden layers, and activation functions of the N second hidden layers are unsaturated activation functions; target input data is input into the initial tunneling parameter prediction model to obtain predicted tunneling parameters, and the target input data is any data in the standardized model input data set; optimizing a hyper-parameter combination of the initial tunneling parameter prediction model based on a quantum particle swarm algorithm, the predicted tunneling parameters an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; GALLERIES ; LARGE UNDERGROUND CHAMBERS ; MINING ; PHYSICS ; SHAFTS ; TUNNELS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117972522A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117972522A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>SHENG GUANGZU</creatorcontrib><creatorcontrib>YU HONGGAN</creatorcontrib><creatorcontrib>HUANG XING</creatorcontrib><creatorcontrib>SANG HAOMIN</creatorcontrib><creatorcontrib>DENG PENGHAI</creatorcontrib><creatorcontrib>WEN TIAN</creatorcontrib><creatorcontrib>LIU QUANSHENG</creatorcontrib><creatorcontrib>YANG TAIHUA</creatorcontrib><title>Training method of tunneling parameter prediction model based on incremental learning and related equipment</title><description>The invention provides a training method of a tunneling parameter prediction model based on incremental learning and related equipment. The tunneling parameter prediction precision of a tunneling machine of the model can be improved. The method comprises the steps that an initial tunneling parameter prediction model is constructed based on a bidirectional long-short time memory network, the tunneling parameter prediction model based on incremental learning comprises an input layer, a first hidden layer, an output layer and N second hidden layers, and activation functions of the N second hidden layers are unsaturated activation functions; target input data is input into the initial tunneling parameter prediction model to obtain predicted tunneling parameters, and the target input data is any data in the standardized model input data set; optimizing a hyper-parameter combination of the initial tunneling parameter prediction model based on a quantum particle swarm algorithm, the predicted tunneling parameters an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GALLERIES</subject><subject>LARGE UNDERGROUND CHAMBERS</subject><subject>MINING</subject><subject>PHYSICS</subject><subject>SHAFTS</subject><subject>TUNNELS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYTyARVYkWEpQrKzSh3H3RRc3s-tkc38T8QBWD34-3rJ4NcpevDyoR35GR7GjPIogzC2x8tShlBTO2-yjUB8dAt15wKSFvFhFD8kcKID1e8biSBE4Twbv0acZrItFx2HA5rerYns5N_V1hxRbDIktBLmtb2VZHStzMOa0_8d8AC3vQg0</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>LIU BIN</creator><creator>SHENG GUANGZU</creator><creator>YU HONGGAN</creator><creator>HUANG XING</creator><creator>SANG HAOMIN</creator><creator>DENG PENGHAI</creator><creator>WEN TIAN</creator><creator>LIU QUANSHENG</creator><creator>YANG TAIHUA</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Training method of tunneling parameter prediction model based on incremental learning and related equipment</title><author>LIU BIN ; SHENG GUANGZU ; YU HONGGAN ; HUANG XING ; SANG HAOMIN ; DENG PENGHAI ; WEN TIAN ; LIU QUANSHENG ; YANG TAIHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117972522A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GALLERIES</topic><topic>LARGE UNDERGROUND CHAMBERS</topic><topic>MINING</topic><topic>PHYSICS</topic><topic>SHAFTS</topic><topic>TUNNELS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>SHENG GUANGZU</creatorcontrib><creatorcontrib>YU HONGGAN</creatorcontrib><creatorcontrib>HUANG XING</creatorcontrib><creatorcontrib>SANG HAOMIN</creatorcontrib><creatorcontrib>DENG PENGHAI</creatorcontrib><creatorcontrib>WEN TIAN</creatorcontrib><creatorcontrib>LIU QUANSHENG</creatorcontrib><creatorcontrib>YANG TAIHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU BIN</au><au>SHENG GUANGZU</au><au>YU HONGGAN</au><au>HUANG XING</au><au>SANG HAOMIN</au><au>DENG PENGHAI</au><au>WEN TIAN</au><au>LIU QUANSHENG</au><au>YANG TAIHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training method of tunneling parameter prediction model based on incremental learning and related equipment</title><date>2024-05-03</date><risdate>2024</risdate><abstract>The invention provides a training method of a tunneling parameter prediction model based on incremental learning and related equipment. The tunneling parameter prediction precision of a tunneling machine of the model can be improved. The method comprises the steps that an initial tunneling parameter prediction model is constructed based on a bidirectional long-short time memory network, the tunneling parameter prediction model based on incremental learning comprises an input layer, a first hidden layer, an output layer and N second hidden layers, and activation functions of the N second hidden layers are unsaturated activation functions; target input data is input into the initial tunneling parameter prediction model to obtain predicted tunneling parameters, and the target input data is any data in the standardized model input data set; optimizing a hyper-parameter combination of the initial tunneling parameter prediction model based on a quantum particle swarm algorithm, the predicted tunneling parameters an</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117972522A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
EARTH DRILLING
ELECTRIC DIGITAL DATA PROCESSING
FIXED CONSTRUCTIONS
GALLERIES
LARGE UNDERGROUND CHAMBERS
MINING
PHYSICS
SHAFTS
TUNNELS
title Training method of tunneling parameter prediction model based on incremental learning and related equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20BIN&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117972522A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true