Method, device and equipment for allocating K8S cluster video memory resources and medium

The invention provides a K8S cluster video memory resource allocation method and device, equipment and a medium, and belongs to the technical field of cloud computing, and the method comprises the steps: obtaining first quantity information and second quantity information of a to-be-trained model ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QIAN SHENGCHONG, LI MINGHUI, HAN ZIXI, CHEN ZHICHAO, DONG ZHIFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QIAN SHENGCHONG
LI MINGHUI
HAN ZIXI
CHEN ZHICHAO
DONG ZHIFEI
description The invention provides a K8S cluster video memory resource allocation method and device, equipment and a medium, and belongs to the technical field of cloud computing, and the method comprises the steps: obtaining first quantity information and second quantity information of a to-be-trained model based on registration information of the to-be-trained model; the first quantity information is used for representing the basic parameter quantity of the to-be-trained model, and the second quantity information is used for representing the to-be-trained parameter quantity of the to-be-trained model; determining a video memory value based on the coding mode of the K8S cluster video memory; the video memory value is used for representing the size of the video memory occupied by each to-be-trained parameter; based on the first quantity information, the second quantity information and the video memory numerical value, determining a video memory usage amount corresponding to a to-be-trained model; and based on the video m
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117971454A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117971454A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117971454A3</originalsourceid><addsrcrecordid>eNqNy70KwjAUhuEuDqLew3HXIVipjlIUQXTRxamE5KsGkpyYn4J3L4gX4PQuzzuu7mfkJ-sFaQxGgaTXhFcxwcFn6jmStJaVzMY_6LS5krIlZUQajAaTg-P4pojEJSqk7--gTXHTatRLmzD7dVLND_tbe1wicIcUpIJH7tqLEM22EfW63q3-MR-emzpS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method, device and equipment for allocating K8S cluster video memory resources and medium</title><source>esp@cenet</source><creator>QIAN SHENGCHONG ; LI MINGHUI ; HAN ZIXI ; CHEN ZHICHAO ; DONG ZHIFEI</creator><creatorcontrib>QIAN SHENGCHONG ; LI MINGHUI ; HAN ZIXI ; CHEN ZHICHAO ; DONG ZHIFEI</creatorcontrib><description>The invention provides a K8S cluster video memory resource allocation method and device, equipment and a medium, and belongs to the technical field of cloud computing, and the method comprises the steps: obtaining first quantity information and second quantity information of a to-be-trained model based on registration information of the to-be-trained model; the first quantity information is used for representing the basic parameter quantity of the to-be-trained model, and the second quantity information is used for representing the to-be-trained parameter quantity of the to-be-trained model; determining a video memory value based on the coding mode of the K8S cluster video memory; the video memory value is used for representing the size of the video memory occupied by each to-be-trained parameter; based on the first quantity information, the second quantity information and the video memory numerical value, determining a video memory usage amount corresponding to a to-be-trained model; and based on the video m</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117971454A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117971454A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIAN SHENGCHONG</creatorcontrib><creatorcontrib>LI MINGHUI</creatorcontrib><creatorcontrib>HAN ZIXI</creatorcontrib><creatorcontrib>CHEN ZHICHAO</creatorcontrib><creatorcontrib>DONG ZHIFEI</creatorcontrib><title>Method, device and equipment for allocating K8S cluster video memory resources and medium</title><description>The invention provides a K8S cluster video memory resource allocation method and device, equipment and a medium, and belongs to the technical field of cloud computing, and the method comprises the steps: obtaining first quantity information and second quantity information of a to-be-trained model based on registration information of the to-be-trained model; the first quantity information is used for representing the basic parameter quantity of the to-be-trained model, and the second quantity information is used for representing the to-be-trained parameter quantity of the to-be-trained model; determining a video memory value based on the coding mode of the K8S cluster video memory; the video memory value is used for representing the size of the video memory occupied by each to-be-trained parameter; based on the first quantity information, the second quantity information and the video memory numerical value, determining a video memory usage amount corresponding to a to-be-trained model; and based on the video m</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy70KwjAUhuEuDqLew3HXIVipjlIUQXTRxamE5KsGkpyYn4J3L4gX4PQuzzuu7mfkJ-sFaQxGgaTXhFcxwcFn6jmStJaVzMY_6LS5krIlZUQajAaTg-P4pojEJSqk7--gTXHTatRLmzD7dVLND_tbe1wicIcUpIJH7tqLEM22EfW63q3-MR-emzpS</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>QIAN SHENGCHONG</creator><creator>LI MINGHUI</creator><creator>HAN ZIXI</creator><creator>CHEN ZHICHAO</creator><creator>DONG ZHIFEI</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Method, device and equipment for allocating K8S cluster video memory resources and medium</title><author>QIAN SHENGCHONG ; LI MINGHUI ; HAN ZIXI ; CHEN ZHICHAO ; DONG ZHIFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117971454A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIAN SHENGCHONG</creatorcontrib><creatorcontrib>LI MINGHUI</creatorcontrib><creatorcontrib>HAN ZIXI</creatorcontrib><creatorcontrib>CHEN ZHICHAO</creatorcontrib><creatorcontrib>DONG ZHIFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIAN SHENGCHONG</au><au>LI MINGHUI</au><au>HAN ZIXI</au><au>CHEN ZHICHAO</au><au>DONG ZHIFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method, device and equipment for allocating K8S cluster video memory resources and medium</title><date>2024-05-03</date><risdate>2024</risdate><abstract>The invention provides a K8S cluster video memory resource allocation method and device, equipment and a medium, and belongs to the technical field of cloud computing, and the method comprises the steps: obtaining first quantity information and second quantity information of a to-be-trained model based on registration information of the to-be-trained model; the first quantity information is used for representing the basic parameter quantity of the to-be-trained model, and the second quantity information is used for representing the to-be-trained parameter quantity of the to-be-trained model; determining a video memory value based on the coding mode of the K8S cluster video memory; the video memory value is used for representing the size of the video memory occupied by each to-be-trained parameter; based on the first quantity information, the second quantity information and the video memory numerical value, determining a video memory usage amount corresponding to a to-be-trained model; and based on the video m</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117971454A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Method, device and equipment for allocating K8S cluster video memory resources and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIAN%20SHENGCHONG&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117971454A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true