Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm

According to the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm, the problems that power distribution network fault diagnosis and positioning time is long, fault point positioning is not accurate enough, and the first-aid repair efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LEI, BAI JINGTAO, ZHANG HAIRANG, LI SASA, ZHU YUE, JIE YEWEI, LIU YUNHUI, ZANG ZHI, CAO RUI, PENG BIN, XU JIAN, MA ZHENQI, WANG TENGDA, WANG ZEWEN, XU DONGQIN, WU MINGCHAO, LI YUHAO, LIU SU, TANG JIAHAN, ZHENG MINGZHOU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LEI
BAI JINGTAO
ZHANG HAIRANG
LI SASA
ZHU YUE
JIE YEWEI
LIU YUNHUI
ZANG ZHI
CAO RUI
PENG BIN
XU JIAN
MA ZHENQI
WANG TENGDA
WANG ZEWEN
XU DONGQIN
WU MINGCHAO
LI YUHAO
LIU SU
TANG JIAHAN
ZHENG MINGZHOU
description According to the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm, the problems that power distribution network fault diagnosis and positioning time is long, fault point positioning is not accurate enough, and the first-aid repair efficiency of first-aid repair personnel is low are solved, and the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm is provided. According to the method, data preprocessing is performed on fault data, abnormal data and missing data are eliminated, and recognition of the fault type of the power distribution network is completed by picking up a fault recognition model; an intelligent fault line selection model of the power distribution network is graded based on a deep learning algorithm, and fault lines are screened according to the model; and finally, visually displaying the fault section and the fault point of the power distribution network in the positioned faul
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117970020A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117970020A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117970020A3</originalsourceid><addsrcrecordid>eNqNjTEOwjAQBN1QIOAPxwOQHCgiShSBoKGijy744pxwbMu-iO_jIB5As1vMrHapzM0LOceWvIDhLIm7STh48CTvkF7Q4-RmhNaHzBliyVlgb2EkGYKBDjMZKBtDFMERpi9FZ0NiGca1WvToMm1-vVLby_nRXHcUQ0s54pPKW9vcq6o-1lrv9enwj_MBk7A_7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm</title><source>esp@cenet</source><creator>WANG LEI ; BAI JINGTAO ; ZHANG HAIRANG ; LI SASA ; ZHU YUE ; JIE YEWEI ; LIU YUNHUI ; ZANG ZHI ; CAO RUI ; PENG BIN ; XU JIAN ; MA ZHENQI ; WANG TENGDA ; WANG ZEWEN ; XU DONGQIN ; WU MINGCHAO ; LI YUHAO ; LIU SU ; TANG JIAHAN ; ZHENG MINGZHOU</creator><creatorcontrib>WANG LEI ; BAI JINGTAO ; ZHANG HAIRANG ; LI SASA ; ZHU YUE ; JIE YEWEI ; LIU YUNHUI ; ZANG ZHI ; CAO RUI ; PENG BIN ; XU JIAN ; MA ZHENQI ; WANG TENGDA ; WANG ZEWEN ; XU DONGQIN ; WU MINGCHAO ; LI YUHAO ; LIU SU ; TANG JIAHAN ; ZHENG MINGZHOU</creatorcontrib><description>According to the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm, the problems that power distribution network fault diagnosis and positioning time is long, fault point positioning is not accurate enough, and the first-aid repair efficiency of first-aid repair personnel is low are solved, and the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm is provided. According to the method, data preprocessing is performed on fault data, abnormal data and missing data are eliminated, and recognition of the fault type of the power distribution network is completed by picking up a fault recognition model; an intelligent fault line selection model of the power distribution network is graded based on a deep learning algorithm, and fault lines are screened according to the model; and finally, visually displaying the fault section and the fault point of the power distribution network in the positioned faul</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117970020A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117970020A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>BAI JINGTAO</creatorcontrib><creatorcontrib>ZHANG HAIRANG</creatorcontrib><creatorcontrib>LI SASA</creatorcontrib><creatorcontrib>ZHU YUE</creatorcontrib><creatorcontrib>JIE YEWEI</creatorcontrib><creatorcontrib>LIU YUNHUI</creatorcontrib><creatorcontrib>ZANG ZHI</creatorcontrib><creatorcontrib>CAO RUI</creatorcontrib><creatorcontrib>PENG BIN</creatorcontrib><creatorcontrib>XU JIAN</creatorcontrib><creatorcontrib>MA ZHENQI</creatorcontrib><creatorcontrib>WANG TENGDA</creatorcontrib><creatorcontrib>WANG ZEWEN</creatorcontrib><creatorcontrib>XU DONGQIN</creatorcontrib><creatorcontrib>WU MINGCHAO</creatorcontrib><creatorcontrib>LI YUHAO</creatorcontrib><creatorcontrib>LIU SU</creatorcontrib><creatorcontrib>TANG JIAHAN</creatorcontrib><creatorcontrib>ZHENG MINGZHOU</creatorcontrib><title>Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm</title><description>According to the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm, the problems that power distribution network fault diagnosis and positioning time is long, fault point positioning is not accurate enough, and the first-aid repair efficiency of first-aid repair personnel is low are solved, and the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm is provided. According to the method, data preprocessing is performed on fault data, abnormal data and missing data are eliminated, and recognition of the fault type of the power distribution network is completed by picking up a fault recognition model; an intelligent fault line selection model of the power distribution network is graded based on a deep learning algorithm, and fault lines are screened according to the model; and finally, visually displaying the fault section and the fault point of the power distribution network in the positioned faul</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOwjAQBN1QIOAPxwOQHCgiShSBoKGijy744pxwbMu-iO_jIB5As1vMrHapzM0LOceWvIDhLIm7STh48CTvkF7Q4-RmhNaHzBliyVlgb2EkGYKBDjMZKBtDFMERpi9FZ0NiGca1WvToMm1-vVLby_nRXHcUQ0s54pPKW9vcq6o-1lrv9enwj_MBk7A_7A</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>WANG LEI</creator><creator>BAI JINGTAO</creator><creator>ZHANG HAIRANG</creator><creator>LI SASA</creator><creator>ZHU YUE</creator><creator>JIE YEWEI</creator><creator>LIU YUNHUI</creator><creator>ZANG ZHI</creator><creator>CAO RUI</creator><creator>PENG BIN</creator><creator>XU JIAN</creator><creator>MA ZHENQI</creator><creator>WANG TENGDA</creator><creator>WANG ZEWEN</creator><creator>XU DONGQIN</creator><creator>WU MINGCHAO</creator><creator>LI YUHAO</creator><creator>LIU SU</creator><creator>TANG JIAHAN</creator><creator>ZHENG MINGZHOU</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm</title><author>WANG LEI ; BAI JINGTAO ; ZHANG HAIRANG ; LI SASA ; ZHU YUE ; JIE YEWEI ; LIU YUNHUI ; ZANG ZHI ; CAO RUI ; PENG BIN ; XU JIAN ; MA ZHENQI ; WANG TENGDA ; WANG ZEWEN ; XU DONGQIN ; WU MINGCHAO ; LI YUHAO ; LIU SU ; TANG JIAHAN ; ZHENG MINGZHOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117970020A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>BAI JINGTAO</creatorcontrib><creatorcontrib>ZHANG HAIRANG</creatorcontrib><creatorcontrib>LI SASA</creatorcontrib><creatorcontrib>ZHU YUE</creatorcontrib><creatorcontrib>JIE YEWEI</creatorcontrib><creatorcontrib>LIU YUNHUI</creatorcontrib><creatorcontrib>ZANG ZHI</creatorcontrib><creatorcontrib>CAO RUI</creatorcontrib><creatorcontrib>PENG BIN</creatorcontrib><creatorcontrib>XU JIAN</creatorcontrib><creatorcontrib>MA ZHENQI</creatorcontrib><creatorcontrib>WANG TENGDA</creatorcontrib><creatorcontrib>WANG ZEWEN</creatorcontrib><creatorcontrib>XU DONGQIN</creatorcontrib><creatorcontrib>WU MINGCHAO</creatorcontrib><creatorcontrib>LI YUHAO</creatorcontrib><creatorcontrib>LIU SU</creatorcontrib><creatorcontrib>TANG JIAHAN</creatorcontrib><creatorcontrib>ZHENG MINGZHOU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>BAI JINGTAO</au><au>ZHANG HAIRANG</au><au>LI SASA</au><au>ZHU YUE</au><au>JIE YEWEI</au><au>LIU YUNHUI</au><au>ZANG ZHI</au><au>CAO RUI</au><au>PENG BIN</au><au>XU JIAN</au><au>MA ZHENQI</au><au>WANG TENGDA</au><au>WANG ZEWEN</au><au>XU DONGQIN</au><au>WU MINGCHAO</au><au>LI YUHAO</au><au>LIU SU</au><au>TANG JIAHAN</au><au>ZHENG MINGZHOU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm</title><date>2024-05-03</date><risdate>2024</risdate><abstract>According to the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm, the problems that power distribution network fault diagnosis and positioning time is long, fault point positioning is not accurate enough, and the first-aid repair efficiency of first-aid repair personnel is low are solved, and the intelligent distribution network fault diagnosis and positioning method based on the deep learning algorithm is provided. According to the method, data preprocessing is performed on fault data, abnormal data and missing data are eliminated, and recognition of the fault type of the power distribution network is completed by picking up a fault recognition model; an intelligent fault line selection model of the power distribution network is graded based on a deep learning algorithm, and fault lines are screened according to the model; and finally, visually displaying the fault section and the fault point of the power distribution network in the positioned faul</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117970020A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Intelligent distribution network fault diagnosis positioning method based on deep learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117970020A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true