Comprehensive reliability detection method for pure electric vehicle

The invention relates to the field of automobiles, in particular to a comprehensive reliability detection method for a pure electric automobile. Comprising a basic structure reliability detection part, a power and transmission system reliability detection part and environment simulation working cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHENG XIAOQIANG, ZHONG GENDING, LONG XU, DUAN LONGYANG, GONG CHUNHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHENG XIAOQIANG
ZHONG GENDING
LONG XU
DUAN LONGYANG
GONG CHUNHUI
description The invention relates to the field of automobiles, in particular to a comprehensive reliability detection method for a pure electric automobile. Comprising a basic structure reliability detection part, a power and transmission system reliability detection part and environment simulation working condition detection. According to the method, based on user vehicle-mounted T-box equipment, through a quantitative analysis mode, it is clear that an electric vehicle structure reliability detection part borrows a structure reliability part of a same-platform fuel oil vehicle reliability specification; according to the method, a K-means clustering analysis technology is utilized to realize automatic classification of user driving data, and driving habit information of a typical scene of a user is accurately obtained by analyzing clustering center data; key data are extracted, strong association between test working condition design and user driving habits is achieved, user use requirements and standard design torque d
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117969117A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117969117A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117969117A3</originalsourceid><addsrcrecordid>eNrjZHBxzs8tKErNSM0rzixLVShKzclMTMrMySypVEhJLUlNLsnMz1PITS3JyE9RSMsvUigoLUpVSM0BShRlJiuUpWZkJuek8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0NzSzNLIOloTIwaAA4NM38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Comprehensive reliability detection method for pure electric vehicle</title><source>esp@cenet</source><creator>CHENG XIAOQIANG ; ZHONG GENDING ; LONG XU ; DUAN LONGYANG ; GONG CHUNHUI</creator><creatorcontrib>CHENG XIAOQIANG ; ZHONG GENDING ; LONG XU ; DUAN LONGYANG ; GONG CHUNHUI</creatorcontrib><description>The invention relates to the field of automobiles, in particular to a comprehensive reliability detection method for a pure electric automobile. Comprising a basic structure reliability detection part, a power and transmission system reliability detection part and environment simulation working condition detection. According to the method, based on user vehicle-mounted T-box equipment, through a quantitative analysis mode, it is clear that an electric vehicle structure reliability detection part borrows a structure reliability part of a same-platform fuel oil vehicle reliability specification; according to the method, a K-means clustering analysis technology is utilized to realize automatic classification of user driving data, and driving habit information of a typical scene of a user is accurately obtained by analyzing clustering center data; key data are extracted, strong association between test working condition design and user driving habits is achieved, user use requirements and standard design torque d</description><language>chi ; eng</language><subject>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE ; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR ; PHYSICS ; TARIFF METERING APPARATUS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117969117A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240503&amp;DB=EPODOC&amp;CC=CN&amp;NR=117969117A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHENG XIAOQIANG</creatorcontrib><creatorcontrib>ZHONG GENDING</creatorcontrib><creatorcontrib>LONG XU</creatorcontrib><creatorcontrib>DUAN LONGYANG</creatorcontrib><creatorcontrib>GONG CHUNHUI</creatorcontrib><title>Comprehensive reliability detection method for pure electric vehicle</title><description>The invention relates to the field of automobiles, in particular to a comprehensive reliability detection method for a pure electric automobile. Comprising a basic structure reliability detection part, a power and transmission system reliability detection part and environment simulation working condition detection. According to the method, based on user vehicle-mounted T-box equipment, through a quantitative analysis mode, it is clear that an electric vehicle structure reliability detection part borrows a structure reliability part of a same-platform fuel oil vehicle reliability specification; according to the method, a K-means clustering analysis technology is utilized to realize automatic classification of user driving data, and driving habit information of a typical scene of a user is accurately obtained by analyzing clustering center data; key data are extracted, strong association between test working condition design and user driving habits is achieved, user use requirements and standard design torque d</description><subject>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</subject><subject>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</subject><subject>PHYSICS</subject><subject>TARIFF METERING APPARATUS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxzs8tKErNSM0rzixLVShKzclMTMrMySypVEhJLUlNLsnMz1PITS3JyE9RSMsvUigoLUpVSM0BShRlJiuUpWZkJuek8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0NzSzNLIOloTIwaAA4NM38</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>CHENG XIAOQIANG</creator><creator>ZHONG GENDING</creator><creator>LONG XU</creator><creator>DUAN LONGYANG</creator><creator>GONG CHUNHUI</creator><scope>EVB</scope></search><sort><creationdate>20240503</creationdate><title>Comprehensive reliability detection method for pure electric vehicle</title><author>CHENG XIAOQIANG ; ZHONG GENDING ; LONG XU ; DUAN LONGYANG ; GONG CHUNHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117969117A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</topic><topic>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</topic><topic>PHYSICS</topic><topic>TARIFF METERING APPARATUS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>CHENG XIAOQIANG</creatorcontrib><creatorcontrib>ZHONG GENDING</creatorcontrib><creatorcontrib>LONG XU</creatorcontrib><creatorcontrib>DUAN LONGYANG</creatorcontrib><creatorcontrib>GONG CHUNHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHENG XIAOQIANG</au><au>ZHONG GENDING</au><au>LONG XU</au><au>DUAN LONGYANG</au><au>GONG CHUNHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Comprehensive reliability detection method for pure electric vehicle</title><date>2024-05-03</date><risdate>2024</risdate><abstract>The invention relates to the field of automobiles, in particular to a comprehensive reliability detection method for a pure electric automobile. Comprising a basic structure reliability detection part, a power and transmission system reliability detection part and environment simulation working condition detection. According to the method, based on user vehicle-mounted T-box equipment, through a quantitative analysis mode, it is clear that an electric vehicle structure reliability detection part borrows a structure reliability part of a same-platform fuel oil vehicle reliability specification; according to the method, a K-means clustering analysis technology is utilized to realize automatic classification of user driving data, and driving habit information of a typical scene of a user is accurately obtained by analyzing clustering center data; key data are extracted, strong association between test working condition design and user driving habits is achieved, user use requirements and standard design torque d</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117969117A
source esp@cenet
subjects ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE
MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
PHYSICS
TARIFF METERING APPARATUS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Comprehensive reliability detection method for pure electric vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHENG%20XIAOQIANG&rft.date=2024-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117969117A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true