Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model

The invention discloses a method and system for reducing the false recognition rate of a power transmission channel forest fire smoke detection model, and the method comprises the steps: carrying out the recognition and filtering through a trained yolo-s model, and screening an image data set of non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUAN SHAOGUANG, PANG KAI, ZHANG JIAXIANG, WANG QI, MAO WANDENG, GUO ZHIMIN, JIANG LIANG, WANG QIAN, TIAN YANGYANG, LI PANYANG, CUI JIABIN, KOU XIAOSHI, ZHANG WEIJIAN, CHEN BIN, LIU SHANFENG, SONG WEI, CHENG XIAWEI, LI ZHE, ZHANG LU, TAN LEI, ZHANG YU, ZHENG WEI, CHEN CEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUAN SHAOGUANG
PANG KAI
ZHANG JIAXIANG
WANG QI
MAO WANDENG
GUO ZHIMIN
JIANG LIANG
WANG QIAN
TIAN YANGYANG
LI PANYANG
CUI JIABIN
KOU XIAOSHI
ZHANG WEIJIAN
CHEN BIN
LIU SHANFENG
SONG WEI
CHENG XIAWEI
LI ZHE
ZHANG LU
TAN LEI
ZHANG YU
ZHENG WEI
CHEN CEN
description The invention discloses a method and system for reducing the false recognition rate of a power transmission channel forest fire smoke detection model, and the method comprises the steps: carrying out the recognition and filtering through a trained yolo-s model, and screening an image data set of non-forest fire smoke; secondly, carrying out fixed position alarm duplicate removal, and filtering out a duplicate information image data set; and finally, final filtering is carried out by combining environmental factor information in the image data set. According to the method, after the collected images are filtered and screened for three times, the accuracy of the identified forest fire smoke images can reach 97%, the false identification rate of forest fire smoke image identification is effectively reduced, and the precision of power transmission channel forest fire smoke model detection is remarkably improved. 一种降低输电通道山火烟雾检测模型误识别率的方法和系统,所述方法包括:首先通过训练好的yolo-s模型进行识别过滤,筛选出非山火烟雾的图像数据集;其次进行固定位置告警去重,过滤掉重复信息图像数据集;最后通过
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117953372A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117953372A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117953372A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wdYxCDBUoJio5V9OO7eJYe53XB7Iv69RvwAqylmZl6kC3Ivjgw70pdmRPKSKME9bOCOYtAEKx2HHIQpmQwST6M8kSgnw_opdFK2N8wYph2ayYcE0ih3kEOG_e5RHIZlMfNmUKx-XBTr0_HWnDcYpYWOxoKR2-ZalvV-V1X19lD907wBUfNE2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model</title><source>esp@cenet</source><creator>YUAN SHAOGUANG ; PANG KAI ; ZHANG JIAXIANG ; WANG QI ; MAO WANDENG ; GUO ZHIMIN ; JIANG LIANG ; WANG QIAN ; TIAN YANGYANG ; LI PANYANG ; CUI JIABIN ; KOU XIAOSHI ; ZHANG WEIJIAN ; CHEN BIN ; LIU SHANFENG ; SONG WEI ; CHENG XIAWEI ; LI ZHE ; ZHANG LU ; TAN LEI ; ZHANG YU ; ZHENG WEI ; CHEN CEN</creator><creatorcontrib>YUAN SHAOGUANG ; PANG KAI ; ZHANG JIAXIANG ; WANG QI ; MAO WANDENG ; GUO ZHIMIN ; JIANG LIANG ; WANG QIAN ; TIAN YANGYANG ; LI PANYANG ; CUI JIABIN ; KOU XIAOSHI ; ZHANG WEIJIAN ; CHEN BIN ; LIU SHANFENG ; SONG WEI ; CHENG XIAWEI ; LI ZHE ; ZHANG LU ; TAN LEI ; ZHANG YU ; ZHENG WEI ; CHEN CEN</creatorcontrib><description>The invention discloses a method and system for reducing the false recognition rate of a power transmission channel forest fire smoke detection model, and the method comprises the steps: carrying out the recognition and filtering through a trained yolo-s model, and screening an image data set of non-forest fire smoke; secondly, carrying out fixed position alarm duplicate removal, and filtering out a duplicate information image data set; and finally, final filtering is carried out by combining environmental factor information in the image data set. According to the method, after the collected images are filtered and screened for three times, the accuracy of the identified forest fire smoke images can reach 97%, the false identification rate of forest fire smoke image identification is effectively reduced, and the precision of power transmission channel forest fire smoke model detection is remarkably improved. 一种降低输电通道山火烟雾检测模型误识别率的方法和系统,所述方法包括:首先通过训练好的yolo-s模型进行识别过滤,筛选出非山火烟雾的图像数据集;其次进行固定位置告警去重,过滤掉重复信息图像数据集;最后通过</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240430&amp;DB=EPODOC&amp;CC=CN&amp;NR=117953372A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240430&amp;DB=EPODOC&amp;CC=CN&amp;NR=117953372A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN SHAOGUANG</creatorcontrib><creatorcontrib>PANG KAI</creatorcontrib><creatorcontrib>ZHANG JIAXIANG</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>MAO WANDENG</creatorcontrib><creatorcontrib>GUO ZHIMIN</creatorcontrib><creatorcontrib>JIANG LIANG</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><creatorcontrib>TIAN YANGYANG</creatorcontrib><creatorcontrib>LI PANYANG</creatorcontrib><creatorcontrib>CUI JIABIN</creatorcontrib><creatorcontrib>KOU XIAOSHI</creatorcontrib><creatorcontrib>ZHANG WEIJIAN</creatorcontrib><creatorcontrib>CHEN BIN</creatorcontrib><creatorcontrib>LIU SHANFENG</creatorcontrib><creatorcontrib>SONG WEI</creatorcontrib><creatorcontrib>CHENG XIAWEI</creatorcontrib><creatorcontrib>LI ZHE</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>TAN LEI</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>ZHENG WEI</creatorcontrib><creatorcontrib>CHEN CEN</creatorcontrib><title>Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model</title><description>The invention discloses a method and system for reducing the false recognition rate of a power transmission channel forest fire smoke detection model, and the method comprises the steps: carrying out the recognition and filtering through a trained yolo-s model, and screening an image data set of non-forest fire smoke; secondly, carrying out fixed position alarm duplicate removal, and filtering out a duplicate information image data set; and finally, final filtering is carried out by combining environmental factor information in the image data set. According to the method, after the collected images are filtered and screened for three times, the accuracy of the identified forest fire smoke images can reach 97%, the false identification rate of forest fire smoke image identification is effectively reduced, and the precision of power transmission channel forest fire smoke model detection is remarkably improved. 一种降低输电通道山火烟雾检测模型误识别率的方法和系统,所述方法包括:首先通过训练好的yolo-s模型进行识别过滤,筛选出非山火烟雾的图像数据集;其次进行固定位置告警去重,过滤掉重复信息图像数据集;最后通过</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wdYxCDBUoJio5V9OO7eJYe53XB7Iv69RvwAqylmZl6kC3Ivjgw70pdmRPKSKME9bOCOYtAEKx2HHIQpmQwST6M8kSgnw_opdFK2N8wYph2ayYcE0ih3kEOG_e5RHIZlMfNmUKx-XBTr0_HWnDcYpYWOxoKR2-ZalvV-V1X19lD907wBUfNE2Q</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>YUAN SHAOGUANG</creator><creator>PANG KAI</creator><creator>ZHANG JIAXIANG</creator><creator>WANG QI</creator><creator>MAO WANDENG</creator><creator>GUO ZHIMIN</creator><creator>JIANG LIANG</creator><creator>WANG QIAN</creator><creator>TIAN YANGYANG</creator><creator>LI PANYANG</creator><creator>CUI JIABIN</creator><creator>KOU XIAOSHI</creator><creator>ZHANG WEIJIAN</creator><creator>CHEN BIN</creator><creator>LIU SHANFENG</creator><creator>SONG WEI</creator><creator>CHENG XIAWEI</creator><creator>LI ZHE</creator><creator>ZHANG LU</creator><creator>TAN LEI</creator><creator>ZHANG YU</creator><creator>ZHENG WEI</creator><creator>CHEN CEN</creator><scope>EVB</scope></search><sort><creationdate>20240430</creationdate><title>Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model</title><author>YUAN SHAOGUANG ; PANG KAI ; ZHANG JIAXIANG ; WANG QI ; MAO WANDENG ; GUO ZHIMIN ; JIANG LIANG ; WANG QIAN ; TIAN YANGYANG ; LI PANYANG ; CUI JIABIN ; KOU XIAOSHI ; ZHANG WEIJIAN ; CHEN BIN ; LIU SHANFENG ; SONG WEI ; CHENG XIAWEI ; LI ZHE ; ZHANG LU ; TAN LEI ; ZHANG YU ; ZHENG WEI ; CHEN CEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117953372A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN SHAOGUANG</creatorcontrib><creatorcontrib>PANG KAI</creatorcontrib><creatorcontrib>ZHANG JIAXIANG</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>MAO WANDENG</creatorcontrib><creatorcontrib>GUO ZHIMIN</creatorcontrib><creatorcontrib>JIANG LIANG</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><creatorcontrib>TIAN YANGYANG</creatorcontrib><creatorcontrib>LI PANYANG</creatorcontrib><creatorcontrib>CUI JIABIN</creatorcontrib><creatorcontrib>KOU XIAOSHI</creatorcontrib><creatorcontrib>ZHANG WEIJIAN</creatorcontrib><creatorcontrib>CHEN BIN</creatorcontrib><creatorcontrib>LIU SHANFENG</creatorcontrib><creatorcontrib>SONG WEI</creatorcontrib><creatorcontrib>CHENG XIAWEI</creatorcontrib><creatorcontrib>LI ZHE</creatorcontrib><creatorcontrib>ZHANG LU</creatorcontrib><creatorcontrib>TAN LEI</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>ZHENG WEI</creatorcontrib><creatorcontrib>CHEN CEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN SHAOGUANG</au><au>PANG KAI</au><au>ZHANG JIAXIANG</au><au>WANG QI</au><au>MAO WANDENG</au><au>GUO ZHIMIN</au><au>JIANG LIANG</au><au>WANG QIAN</au><au>TIAN YANGYANG</au><au>LI PANYANG</au><au>CUI JIABIN</au><au>KOU XIAOSHI</au><au>ZHANG WEIJIAN</au><au>CHEN BIN</au><au>LIU SHANFENG</au><au>SONG WEI</au><au>CHENG XIAWEI</au><au>LI ZHE</au><au>ZHANG LU</au><au>TAN LEI</au><au>ZHANG YU</au><au>ZHENG WEI</au><au>CHEN CEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model</title><date>2024-04-30</date><risdate>2024</risdate><abstract>The invention discloses a method and system for reducing the false recognition rate of a power transmission channel forest fire smoke detection model, and the method comprises the steps: carrying out the recognition and filtering through a trained yolo-s model, and screening an image data set of non-forest fire smoke; secondly, carrying out fixed position alarm duplicate removal, and filtering out a duplicate information image data set; and finally, final filtering is carried out by combining environmental factor information in the image data set. According to the method, after the collected images are filtered and screened for three times, the accuracy of the identified forest fire smoke images can reach 97%, the false identification rate of forest fire smoke image identification is effectively reduced, and the precision of power transmission channel forest fire smoke model detection is remarkably improved. 一种降低输电通道山火烟雾检测模型误识别率的方法和系统,所述方法包括:首先通过训练好的yolo-s模型进行识别过滤,筛选出非山火烟雾的图像数据集;其次进行固定位置告警去重,过滤掉重复信息图像数据集;最后通过</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117953372A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title Method and system for reducing misrecognition rate of power transmission channel forest fire smoke detection model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20SHAOGUANG&rft.date=2024-04-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117953372A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true