Guided contextual attention mapping for repair tasks

Systems and methods for augmenting data may utilize one or more machine-learned models and contextual attention data to provide more realistic and efficient data augmentation. For example, systems and methods for repair may utilize a machine-learned model to generate predicted contextual attention d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WADHWA NAVEEN, KERNAN YASHWANTH P, KANAZAWA TOMOTSUGU, ABERMAN KENNETH
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WADHWA NAVEEN
KERNAN YASHWANTH P
KANAZAWA TOMOTSUGU
ABERMAN KENNETH
description Systems and methods for augmenting data may utilize one or more machine-learned models and contextual attention data to provide more realistic and efficient data augmentation. For example, systems and methods for repair may utilize a machine-learned model to generate predicted contextual attention data and mix the predicted contextual attention data with the obtained contextual attention data to determine replacement data for enhancing an image to replace one or more occlusions. The obtained contextual attention data may include user-guided contextual attention. 用于增强数据的系统和方法可以利用一个或多个机器学习的模型和上下文注意力数据来提供更真实和有效的数据增强。例如,用于修复的系统和方法可以利用机器学习的模型来生成预测的上下文注意力数据,并将预测的上下文注意力数据与获得的上下文注意力数据混合,以确定用于增强图像以替换一个或多个遮挡的替换数据。获得的上下文注意力数据可以包括用户引导的上下文注意力。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117940954A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117940954A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117940954A3</originalsourceid><addsrcrecordid>eNrjZDBxL81MSU1RSM7PK0mtKClNzFFILClJzSvJzM9TyE0sKMjMS1dIyy9SKEotSMwsUihJLM4u5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hobmliYGlqYmjsbEqAEAXnEtNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Guided contextual attention mapping for repair tasks</title><source>esp@cenet</source><creator>WADHWA NAVEEN ; KERNAN YASHWANTH P ; KANAZAWA TOMOTSUGU ; ABERMAN KENNETH</creator><creatorcontrib>WADHWA NAVEEN ; KERNAN YASHWANTH P ; KANAZAWA TOMOTSUGU ; ABERMAN KENNETH</creatorcontrib><description>Systems and methods for augmenting data may utilize one or more machine-learned models and contextual attention data to provide more realistic and efficient data augmentation. For example, systems and methods for repair may utilize a machine-learned model to generate predicted contextual attention data and mix the predicted contextual attention data with the obtained contextual attention data to determine replacement data for enhancing an image to replace one or more occlusions. The obtained contextual attention data may include user-guided contextual attention. 用于增强数据的系统和方法可以利用一个或多个机器学习的模型和上下文注意力数据来提供更真实和有效的数据增强。例如,用于修复的系统和方法可以利用机器学习的模型来生成预测的上下文注意力数据,并将预测的上下文注意力数据与获得的上下文注意力数据混合,以确定用于增强图像以替换一个或多个遮挡的替换数据。获得的上下文注意力数据可以包括用户引导的上下文注意力。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240426&amp;DB=EPODOC&amp;CC=CN&amp;NR=117940954A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240426&amp;DB=EPODOC&amp;CC=CN&amp;NR=117940954A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WADHWA NAVEEN</creatorcontrib><creatorcontrib>KERNAN YASHWANTH P</creatorcontrib><creatorcontrib>KANAZAWA TOMOTSUGU</creatorcontrib><creatorcontrib>ABERMAN KENNETH</creatorcontrib><title>Guided contextual attention mapping for repair tasks</title><description>Systems and methods for augmenting data may utilize one or more machine-learned models and contextual attention data to provide more realistic and efficient data augmentation. For example, systems and methods for repair may utilize a machine-learned model to generate predicted contextual attention data and mix the predicted contextual attention data with the obtained contextual attention data to determine replacement data for enhancing an image to replace one or more occlusions. The obtained contextual attention data may include user-guided contextual attention. 用于增强数据的系统和方法可以利用一个或多个机器学习的模型和上下文注意力数据来提供更真实和有效的数据增强。例如,用于修复的系统和方法可以利用机器学习的模型来生成预测的上下文注意力数据,并将预测的上下文注意力数据与获得的上下文注意力数据混合,以确定用于增强图像以替换一个或多个遮挡的替换数据。获得的上下文注意力数据可以包括用户引导的上下文注意力。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBxL81MSU1RSM7PK0mtKClNzFFILClJzSvJzM9TyE0sKMjMS1dIyy9SKEotSMwsUihJLM4u5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hobmliYGlqYmjsbEqAEAXnEtNg</recordid><startdate>20240426</startdate><enddate>20240426</enddate><creator>WADHWA NAVEEN</creator><creator>KERNAN YASHWANTH P</creator><creator>KANAZAWA TOMOTSUGU</creator><creator>ABERMAN KENNETH</creator><scope>EVB</scope></search><sort><creationdate>20240426</creationdate><title>Guided contextual attention mapping for repair tasks</title><author>WADHWA NAVEEN ; KERNAN YASHWANTH P ; KANAZAWA TOMOTSUGU ; ABERMAN KENNETH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117940954A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WADHWA NAVEEN</creatorcontrib><creatorcontrib>KERNAN YASHWANTH P</creatorcontrib><creatorcontrib>KANAZAWA TOMOTSUGU</creatorcontrib><creatorcontrib>ABERMAN KENNETH</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WADHWA NAVEEN</au><au>KERNAN YASHWANTH P</au><au>KANAZAWA TOMOTSUGU</au><au>ABERMAN KENNETH</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Guided contextual attention mapping for repair tasks</title><date>2024-04-26</date><risdate>2024</risdate><abstract>Systems and methods for augmenting data may utilize one or more machine-learned models and contextual attention data to provide more realistic and efficient data augmentation. For example, systems and methods for repair may utilize a machine-learned model to generate predicted contextual attention data and mix the predicted contextual attention data with the obtained contextual attention data to determine replacement data for enhancing an image to replace one or more occlusions. The obtained contextual attention data may include user-guided contextual attention. 用于增强数据的系统和方法可以利用一个或多个机器学习的模型和上下文注意力数据来提供更真实和有效的数据增强。例如,用于修复的系统和方法可以利用机器学习的模型来生成预测的上下文注意力数据,并将预测的上下文注意力数据与获得的上下文注意力数据混合,以确定用于增强图像以替换一个或多个遮挡的替换数据。获得的上下文注意力数据可以包括用户引导的上下文注意力。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117940954A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Guided contextual attention mapping for repair tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WADHWA%20NAVEEN&rft.date=2024-04-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117940954A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true