Deep learning model training method and system for indoor multi-person identification and detection

The embodiment of the invention provides a training method of a deep learning model for indoor multi-person identification and detection. The method comprises the following steps: carrying out indoor volume activity detection, and determining an indoor noise training set which does not reach a prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHI LIMING, QU YUANYING, WANG XINHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHI LIMING
QU YUANYING
WANG XINHENG
description The embodiment of the invention provides a training method of a deep learning model for indoor multi-person identification and detection. The method comprises the following steps: carrying out indoor volume activity detection, and determining an indoor noise training set which does not reach a preset power density threshold value and a footstep sound training set which reaches the preset power density threshold value; determining an indoor environment noise signal-to-noise ratio by using the indoor noise training set, and updating an indoor noise library based on the signal-to-noise ratio; filtering additional noise in the footstep sound training set based on an indoor noise library to obtain a first sample feature; determining a probability distribution function of the footstep sound training set through dynamic time warping, establishing a similar matrix by using the probability distribution function, and matching to obtain a second sample feature; and training the deep learning model until the model conver
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117912471A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117912471A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117912471A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAUheEuDqK-w_UBOkSF4liq4uTkXkJyqhfSm5BcB9_eFn0Ap58PzllW7gQkCrBZWB40Ro9Ami1_CX1GT1Y8lXdRjDTETCw-ThlfQblOyCUKsYcoD-ys8sT54aFws9bVYrChYPPrqtpezvfuWiPFHiVZB4H23c2Y5mh2h8a0-382H8AtPt0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning model training method and system for indoor multi-person identification and detection</title><source>esp@cenet</source><creator>SHI LIMING ; QU YUANYING ; WANG XINHENG</creator><creatorcontrib>SHI LIMING ; QU YUANYING ; WANG XINHENG</creatorcontrib><description>The embodiment of the invention provides a training method of a deep learning model for indoor multi-person identification and detection. The method comprises the following steps: carrying out indoor volume activity detection, and determining an indoor noise training set which does not reach a preset power density threshold value and a footstep sound training set which reaches the preset power density threshold value; determining an indoor environment noise signal-to-noise ratio by using the indoor noise training set, and updating an indoor noise library based on the signal-to-noise ratio; filtering additional noise in the footstep sound training set based on an indoor noise library to obtain a first sample feature; determining a probability distribution function of the footstep sound training set through dynamic time warping, establishing a similar matrix by using the probability distribution function, and matching to obtain a second sample feature; and training the deep learning model until the model conver</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117912471A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117912471A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI LIMING</creatorcontrib><creatorcontrib>QU YUANYING</creatorcontrib><creatorcontrib>WANG XINHENG</creatorcontrib><title>Deep learning model training method and system for indoor multi-person identification and detection</title><description>The embodiment of the invention provides a training method of a deep learning model for indoor multi-person identification and detection. The method comprises the following steps: carrying out indoor volume activity detection, and determining an indoor noise training set which does not reach a preset power density threshold value and a footstep sound training set which reaches the preset power density threshold value; determining an indoor environment noise signal-to-noise ratio by using the indoor noise training set, and updating an indoor noise library based on the signal-to-noise ratio; filtering additional noise in the footstep sound training set based on an indoor noise library to obtain a first sample feature; determining a probability distribution function of the footstep sound training set through dynamic time warping, establishing a similar matrix by using the probability distribution function, and matching to obtain a second sample feature; and training the deep learning model until the model conver</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAUheEuDqK-w_UBOkSF4liq4uTkXkJyqhfSm5BcB9_eFn0Ap58PzllW7gQkCrBZWB40Ro9Ami1_CX1GT1Y8lXdRjDTETCw-ThlfQblOyCUKsYcoD-ys8sT54aFws9bVYrChYPPrqtpezvfuWiPFHiVZB4H23c2Y5mh2h8a0-382H8AtPt0</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>SHI LIMING</creator><creator>QU YUANYING</creator><creator>WANG XINHENG</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Deep learning model training method and system for indoor multi-person identification and detection</title><author>SHI LIMING ; QU YUANYING ; WANG XINHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117912471A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI LIMING</creatorcontrib><creatorcontrib>QU YUANYING</creatorcontrib><creatorcontrib>WANG XINHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI LIMING</au><au>QU YUANYING</au><au>WANG XINHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning model training method and system for indoor multi-person identification and detection</title><date>2024-04-19</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a training method of a deep learning model for indoor multi-person identification and detection. The method comprises the following steps: carrying out indoor volume activity detection, and determining an indoor noise training set which does not reach a preset power density threshold value and a footstep sound training set which reaches the preset power density threshold value; determining an indoor environment noise signal-to-noise ratio by using the indoor noise training set, and updating an indoor noise library based on the signal-to-noise ratio; filtering additional noise in the footstep sound training set based on an indoor noise library to obtain a first sample feature; determining a probability distribution function of the footstep sound training set through dynamic time warping, establishing a similar matrix by using the probability distribution function, and matching to obtain a second sample feature; and training the deep learning model until the model conver</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117912471A
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Deep learning model training method and system for indoor multi-person identification and detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20LIMING&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117912471A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true