Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology

The invention relates to an industrial instrument detection method based on domain adaptation and unsupervised technology fusion. The method comprises the following steps: step 1, constructing a source domain data set composed of generated images and a target domain data set composed of real shot im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TIAN MENG, HAO CHUNXIAO, LIU WEI, ZHANG ZHAO, HAN BIN, SONG GUANGJU, ZHANG JUN, ZENG MING, LIU CHAO, MA YUE, ZHONG SHUTONG, ZHANG LINA, YU HANSHEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TIAN MENG
HAO CHUNXIAO
LIU WEI
ZHANG ZHAO
HAN BIN
SONG GUANGJU
ZHANG JUN
ZENG MING
LIU CHAO
MA YUE
ZHONG SHUTONG
ZHANG LINA
YU HANSHEN
description The invention relates to an industrial instrument detection method based on domain adaptation and unsupervised technology fusion. The method comprises the following steps: step 1, constructing a source domain data set composed of generated images and a target domain data set composed of real shot images; 2, building a target detection network; 3, obtaining the confidence coefficient of bounding box regression and the overall output confidence coefficient; 4, training the target detection network in the step 2; step 5, simultaneously utilizing the source domain data and the target domain data to carry out domain adaptation training on the target detection network obtained in the step 4, and selecting the target domain sample and the source domain sample with the highest confidence coefficient to carry out splicing to obtain a spliced image and a pseudo label thereof; step 6, calculating the consistency loss between the spliced prediction result in the step 5 and the pseudo label; 7, calculating the total loss
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117911323A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117911323A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117911323A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QAWawqxlKBoY2UfxswkWdjMLNlZwdubiAew-v8_Hn9ZdDehnGz0GMDLVPLAYkBs3JhXgYGtV4InJiaYdpvTjLUF0gG9ABJGw6-LQpAl5cjjy8_-dNKLBu3e62LRYki8-eWq2F7Oj-q646g1p4gNC1td3Z07HJ0r9-Wp_Mf5AEuiQPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology</title><source>esp@cenet</source><creator>TIAN MENG ; HAO CHUNXIAO ; LIU WEI ; ZHANG ZHAO ; HAN BIN ; SONG GUANGJU ; ZHANG JUN ; ZENG MING ; LIU CHAO ; MA YUE ; ZHONG SHUTONG ; ZHANG LINA ; YU HANSHEN</creator><creatorcontrib>TIAN MENG ; HAO CHUNXIAO ; LIU WEI ; ZHANG ZHAO ; HAN BIN ; SONG GUANGJU ; ZHANG JUN ; ZENG MING ; LIU CHAO ; MA YUE ; ZHONG SHUTONG ; ZHANG LINA ; YU HANSHEN</creatorcontrib><description>The invention relates to an industrial instrument detection method based on domain adaptation and unsupervised technology fusion. The method comprises the following steps: step 1, constructing a source domain data set composed of generated images and a target domain data set composed of real shot images; 2, building a target detection network; 3, obtaining the confidence coefficient of bounding box regression and the overall output confidence coefficient; 4, training the target detection network in the step 2; step 5, simultaneously utilizing the source domain data and the target domain data to carry out domain adaptation training on the target detection network obtained in the step 4, and selecting the target domain sample and the source domain sample with the highest confidence coefficient to carry out splicing to obtain a spliced image and a pseudo label thereof; step 6, calculating the consistency loss between the spliced prediction result in the step 5 and the pseudo label; 7, calculating the total loss</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117911323A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117911323A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TIAN MENG</creatorcontrib><creatorcontrib>HAO CHUNXIAO</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG ZHAO</creatorcontrib><creatorcontrib>HAN BIN</creatorcontrib><creatorcontrib>SONG GUANGJU</creatorcontrib><creatorcontrib>ZHANG JUN</creatorcontrib><creatorcontrib>ZENG MING</creatorcontrib><creatorcontrib>LIU CHAO</creatorcontrib><creatorcontrib>MA YUE</creatorcontrib><creatorcontrib>ZHONG SHUTONG</creatorcontrib><creatorcontrib>ZHANG LINA</creatorcontrib><creatorcontrib>YU HANSHEN</creatorcontrib><title>Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology</title><description>The invention relates to an industrial instrument detection method based on domain adaptation and unsupervised technology fusion. The method comprises the following steps: step 1, constructing a source domain data set composed of generated images and a target domain data set composed of real shot images; 2, building a target detection network; 3, obtaining the confidence coefficient of bounding box regression and the overall output confidence coefficient; 4, training the target detection network in the step 2; step 5, simultaneously utilizing the source domain data and the target domain data to carry out domain adaptation training on the target detection network obtained in the step 4, and selecting the target domain sample and the source domain sample with the highest confidence coefficient to carry out splicing to obtain a spliced image and a pseudo label thereof; step 6, calculating the consistency loss between the spliced prediction result in the step 5 and the pseudo label; 7, calculating the total loss</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QAWawqxlKBoY2UfxswkWdjMLNlZwdubiAew-v8_Hn9ZdDehnGz0GMDLVPLAYkBs3JhXgYGtV4InJiaYdpvTjLUF0gG9ABJGw6-LQpAl5cjjy8_-dNKLBu3e62LRYki8-eWq2F7Oj-q646g1p4gNC1td3Z07HJ0r9-Wp_Mf5AEuiQPw</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>TIAN MENG</creator><creator>HAO CHUNXIAO</creator><creator>LIU WEI</creator><creator>ZHANG ZHAO</creator><creator>HAN BIN</creator><creator>SONG GUANGJU</creator><creator>ZHANG JUN</creator><creator>ZENG MING</creator><creator>LIU CHAO</creator><creator>MA YUE</creator><creator>ZHONG SHUTONG</creator><creator>ZHANG LINA</creator><creator>YU HANSHEN</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology</title><author>TIAN MENG ; HAO CHUNXIAO ; LIU WEI ; ZHANG ZHAO ; HAN BIN ; SONG GUANGJU ; ZHANG JUN ; ZENG MING ; LIU CHAO ; MA YUE ; ZHONG SHUTONG ; ZHANG LINA ; YU HANSHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117911323A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TIAN MENG</creatorcontrib><creatorcontrib>HAO CHUNXIAO</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG ZHAO</creatorcontrib><creatorcontrib>HAN BIN</creatorcontrib><creatorcontrib>SONG GUANGJU</creatorcontrib><creatorcontrib>ZHANG JUN</creatorcontrib><creatorcontrib>ZENG MING</creatorcontrib><creatorcontrib>LIU CHAO</creatorcontrib><creatorcontrib>MA YUE</creatorcontrib><creatorcontrib>ZHONG SHUTONG</creatorcontrib><creatorcontrib>ZHANG LINA</creatorcontrib><creatorcontrib>YU HANSHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TIAN MENG</au><au>HAO CHUNXIAO</au><au>LIU WEI</au><au>ZHANG ZHAO</au><au>HAN BIN</au><au>SONG GUANGJU</au><au>ZHANG JUN</au><au>ZENG MING</au><au>LIU CHAO</au><au>MA YUE</au><au>ZHONG SHUTONG</au><au>ZHANG LINA</au><au>YU HANSHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology</title><date>2024-04-19</date><risdate>2024</risdate><abstract>The invention relates to an industrial instrument detection method based on domain adaptation and unsupervised technology fusion. The method comprises the following steps: step 1, constructing a source domain data set composed of generated images and a target domain data set composed of real shot images; 2, building a target detection network; 3, obtaining the confidence coefficient of bounding box regression and the overall output confidence coefficient; 4, training the target detection network in the step 2; step 5, simultaneously utilizing the source domain data and the target domain data to carry out domain adaptation training on the target detection network obtained in the step 4, and selecting the target domain sample and the source domain sample with the highest confidence coefficient to carry out splicing to obtain a spliced image and a pseudo label thereof; step 6, calculating the consistency loss between the spliced prediction result in the step 5 and the pseudo label; 7, calculating the total loss</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117911323A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Industrial instrument detection method based on fusion of domain adaptation and unsupervised technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TIAN%20MENG&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117911323A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true