Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior

The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHU LIN, JIANG MAN, JIN JIANXIU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHU LIN
JIANG MAN
JIN JIANXIU
description The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117909868A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117909868A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117909868A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIFkHtUkrFlSv3ZUymaSCZCUlayO2t4AFcfT7vv7-uSudI5SjEisKITkxED0oM22xnAieoARldSTaBpzzKt2tIJWXy8MZEGoRBF0ZvFSx-GJcDnsVN2S5EBmCaIjqwHo1lAyFaidtqNaBLtPvlptrfu1f7OFCQnlJARUy5b591fWmOzfV8vZ3-2XwAnLtHog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><source>esp@cenet</source><creator>SHU LIN ; JIANG MAN ; JIN JIANXIU</creator><creatorcontrib>SHU LIN ; JIANG MAN ; JIN JIANXIU</creatorcontrib><description>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117909868A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240419&amp;DB=EPODOC&amp;CC=CN&amp;NR=117909868A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHU LIN</creatorcontrib><creatorcontrib>JIANG MAN</creatorcontrib><creatorcontrib>JIN JIANXIU</creatorcontrib><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><description>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIFkHtUkrFlSv3ZUymaSCZCUlayO2t4AFcfT7vv7-uSudI5SjEisKITkxED0oM22xnAieoARldSTaBpzzKt2tIJWXy8MZEGoRBF0ZvFSx-GJcDnsVN2S5EBmCaIjqwHo1lAyFaidtqNaBLtPvlptrfu1f7OFCQnlJARUy5b591fWmOzfV8vZ3-2XwAnLtHog</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>SHU LIN</creator><creator>JIANG MAN</creator><creator>JIN JIANXIU</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><author>SHU LIN ; JIANG MAN ; JIN JIANXIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117909868A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>SHU LIN</creatorcontrib><creatorcontrib>JIANG MAN</creatorcontrib><creatorcontrib>JIN JIANXIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHU LIN</au><au>JIANG MAN</au><au>JIN JIANXIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><date>2024-04-19</date><risdate>2024</risdate><abstract>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN117909868A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
ELECTRIC DIGITAL DATA PROCESSING
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHU%20LIN&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117909868A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true