Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior
The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencep...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHU LIN JIANG MAN JIN JIANXIU |
description | The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117909868A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117909868A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117909868A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIFkHtUkrFlSv3ZUymaSCZCUlayO2t4AFcfT7vv7-uSudI5SjEisKITkxED0oM22xnAieoARldSTaBpzzKt2tIJWXy8MZEGoRBF0ZvFSx-GJcDnsVN2S5EBmCaIjqwHo1lAyFaidtqNaBLtPvlptrfu1f7OFCQnlJARUy5b591fWmOzfV8vZ3-2XwAnLtHog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><source>esp@cenet</source><creator>SHU LIN ; JIANG MAN ; JIN JIANXIU</creator><creatorcontrib>SHU LIN ; JIANG MAN ; JIN JIANXIU</creatorcontrib><description>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909868A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240419&DB=EPODOC&CC=CN&NR=117909868A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHU LIN</creatorcontrib><creatorcontrib>JIANG MAN</creatorcontrib><creatorcontrib>JIN JIANXIU</creatorcontrib><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><description>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIFkHtUkrFlSv3ZUymaSCZCUlayO2t4AFcfT7vv7-uSudI5SjEisKITkxED0oM22xnAieoARldSTaBpzzKt2tIJWXy8MZEGoRBF0ZvFSx-GJcDnsVN2S5EBmCaIjqwHo1lAyFaidtqNaBLtPvlptrfu1f7OFCQnlJARUy5b591fWmOzfV8vZ3-2XwAnLtHog</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>SHU LIN</creator><creator>JIANG MAN</creator><creator>JIN JIANXIU</creator><scope>EVB</scope></search><sort><creationdate>20240419</creationdate><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><author>SHU LIN ; JIANG MAN ; JIN JIANXIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117909868A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>SHU LIN</creatorcontrib><creatorcontrib>JIANG MAN</creatorcontrib><creatorcontrib>JIN JIANXIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHU LIN</au><au>JIANG MAN</au><au>JIN JIANXIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior</title><date>2024-04-19</date><risdate>2024</risdate><abstract>The invention relates to the field of electroencephalogram signal recognition, in particular to an electroencephalogram cognitive load analysis method and system based on neural imaging prior dynamic graph convolution, and the method comprises the following steps: preprocessing original electroencephalogram data, processing labels, constructing a cross-subject data set of a subject, and constructing a cross-subject data set of the subject; and establishing an electroencephalogram cognitive load analysis model based on the neural imaging prior dynamic graph convolution to realize the analysis of the electroencephalogram cognitive load. In the electroencephalogram cognitive load analysis model, through a multi-scale space-time attention cavity convolution module, modeling importance between each electroencephalogram channel and time features, and extracting multi-scale feature information related to the cognitive load; priori initializing an adjacent matrix of the electroencephalogram electrode based on neuroim</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117909868A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS ELECTRIC DIGITAL DATA PROCESSING HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY |
title | Electroencephalogram cognitive load analysis method and system based on dynamic graph convolution of neural imaging prior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHU%20LIN&rft.date=2024-04-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117909868A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |